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Introduction

Examples of subsidence
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1. Louisiana	wetlands:	fault	activation	
(USGS)

2.	Venice:	mixed	effect	of	
groundwater	and	gas	
extraction

3.	Groningen:	
seismic	effects	
(NAM)

1992 2012



Subsidence,	induced seismicity
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q Subsidence to first order 
related to pressure drop in 
reservoir (e.g. Geertsma, 
1963)

q Relation with induced and 
natural seismicity poorly 
understood, for example in 
Groningen, San Jacinto, 
Basel. 

Bourne	et	al	(2014)	

K. van Thienen-Visser et al.: Compaction and subsidence of the Groningen gas field 371

Figure 4. Compaction in the Groningen reservoir at January 2012 calculated with the RTiCM model (from TNO, 2014). The difference
between calculated and modeled subsidence is indicated at the benchmark locations (label: Subsidence diff). A red color indicates that the
measured subsidence is larger than the modeled subsidence.

Due to the creep part of the RTiCM model, this model will
lead to larger subsidence values at the end of field life (ex-
pected in 2080).

3.4 Discussion

The compaction models (RTiCM and Time Decay) both fit
the delay character of the observed subsidence in the first
10 years after the start of the gas production (Fig. 3). They
underpredict the maximum subsidence in the center of the
subsidence bowl by 2–3 cm for the RTiCM model and 5–
6 cm for the Time Decay model at the end of 2011. Spatially
both compaction models show the same pattern of overesti-

mation and underestimation (Fig. 4). An overestimation of
the subsidence occurs in the eastern part and in the north-
western part of the field. An underestimation exists in the
southwestern part of the field. The differences between the
compaction models are in the amplitude of maximum com-
paction (RTiCM larger than Time Decay) and the shape of
the subsidence bowl at the edges of the field. The RTiCM
model predicts a slightly steeper subsidence bowl than the
Time Decay model.
As is clear from Fig. 4, relatively large misfits (up to 8 cm)

occur over the field. In the van Opstal (1974) method a depth
of a rigid basement is assumed, which governs the shape of

proc-iahs.net/372/367/2015/ Proc. IAHS, 372, 367–373, 2015

Difference	between	calculated	and	modeled	subsidence	
indicated	at	benchmark	locations.	
Van	Thienen-Visser et	al	(2015)



Geodetic monitoring

q Subsidence can be observed with 
satellites (InSAR, GPS) as well as in situ 
techniques (levelling)

5
https://ca.water.usgs.gov/land_subsidence/california-subsidence-
measuring.html

http://comet.earth.ox.ac.uk/for_schools_radar4.html

Haghshenas and	Motagh (GFZ	&	Leibniz	Uni.	Hannover),	Zeitschrift für
Geodäsie,	Geoinformation und	Landmanagement,	2017,	
www.geodaesie.info

FachbeitragHaghshenas Haghighi/Motagh, Sentinel-1 InSAR over Germany:  …

251142. Jg.   4/2017   zfv

is located at ~4 to 6 km of the NW-SE profile and ~4 km 
of the NE-SW profile showing about 2 mm/yr of uplift.

Our results also indicate a subsidence of ~2 mm/yr at 
approximately 1 km in the NW-SE profile. To better illu-
strate this, a zoom in the area of subsidence from results 
obtained using S-1 orbit No. 44 is shown in Fig. 6. The 
subsidence signal with maximum velocity of 8 mm/yr 
is related to a small area of about 250 × 250 m2, called 
Egelpfuhl; similar results are obtained in this region us-
ing other datasets (results not shown here). This area in 
Berlin was used as a landfill for demolishing waste as 
well as household waste after the Second World War. In 
the 2000s, the gas produced from de molishing waste in 
this landfill was extracted for safety reasons and some 
gardens where constructed in the area. As seen in Fig. 6, 
the sub sidence is localized in the former landfill area. 
Therefore, we assume it is most probably related to the 
settlement of the old demolishing landfill.

Some examples of displacement time-series at different 
locations (see Fig. 4) are shown in Fig. 7. The time-series 
(a, d, g, j) show the trend of the displacement in the uplift 
area. Interestingly, with its dense temporal resolution, S-1 
InSAR analysis reflects up to 2 cm of seasonal variations 
in displacement. The variations are likely to be related to 
charge and discharge of the storage; we observe uplift 
during summer time (the period of gas injection) and sub-
sidence during winter time (the extraction period).

The time-series of displacement in the Egel pfuhl land-
fill area (b, e, h, k) show a clear trend of subsidence with 
less seasonal fluctuations. To assess the accuracy, the 
time-series of displacement for a stable point is also plot-
ted (c, f, i, l). This point does not show any clear trend or 
meaningful variations, confirming that the trend and sea-
sonal variation signals we observed in the displacement 
areas are not caused by spatially correlated artifacts. The 
low RMS of the time-series for this stable point (2.5, 1.3, 
2.2, and 1.4 mm corresponding to orbit No. 44, 95, 146, 
and 168, respectively) indicates that the noise level in the 

Fig. 5: (a) and (b) Profiles of average velocities along the 
white dashed and solid lines in Fig. 4 derived from differ-
ent Sentinel-1 datasets.

Fig. 6: Vertical displacement rates obtained by PSI method 
from Sentinel-1 orbit No. 44 in the Egelpfuhl area, west 
of Berlin. The triangle shows the location of the down-
ward-pointing triangle in Fig. 4b. Background image is 
from GoogleEarth™.

Fig. 7: 
The time-series of vertical dis-
placements at three different  
locations for different orbits of 
the Sentinel-1 dataset: (a-c), 
(d-f), (g-i), and (j-l) show the 
results from S-1 orbits No. 44, 
95, 146, and 168, respectively. 
Left, middle, and right panels 
correspond to the uplift area, the 
subsidence area, and a stable area 
away from deformation zones 
that are shown in Fig. 4 with an 
upward-pointing triangle, down-
ward-pointing triangle, and plus 
sign, respectively.

Subsidence	and	uplift	at	Egehlpfuhl (N	of	Potsdam)	as	observed	by	
Sentinal-1	InSAR



Modelling subsidence due to reservoir	compaction

q Time-independent deformation 
model: represent reservoir 
compaction with a point source, 
following Mogi (1958).

q Finite element geomechanical
model with single fluid flow (e.g. 
Plaxis)

q Apply compaction model to 
reservoir pressure field: 
Geertsma’s analytical solution 
(1963), in combination with a time-
dependent pressure distribution from 
a multi-layer reservoir model.

q Fully coupled flow-geomechanics: 
FEM geomechanical model coupled 
to finite difference model reservoir 
flow, e.g. ADGPRS (Garipov et al, 
2016, Voskov and Tchelepi, 2012)

q Integrated model that includes 
geomechanics and multi-fluid, multi-
phase flow 6

23-4-2016
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22

Groningen fault model

• 1700 faults interpreted

• 1100 faults in Petrel model

• 700 faults used for gridding

• Hand-picked inclined faults

• 100 x 100 m grid

Groningen	reservoir	
model
Mmax workshop	March	2016,	
http://feitenencijfers.namplat
form.nl

Bau (2014),	after	Geertsma (1963)

12 3. Methodology

Figure 3.1: Coordinate system and geometric relations of the point pressure source, used to derive surface deformation (figure taken
from (Dzurisin, (2007))

3.2. Statistical part
3.2.1. Data assimilation
Data assimilation is a process where observational data is fused with scientific information. The following
components are needed to perform data assimilation, namely data and an a priori statistical model for the
state process. Data assimilation is viewed from a Bayesian perspective. (Wikle and Berliner, (2007)

Numerical sampling, also known as Monte Carlo techniques.(?) Gaussian distribution
Cauchy distribution
Class of datasets that are sequential data, an example are timeseries of deformation measurements. There
are stationary and nonstationary sequential distributions, where the stationary data evolves in time, but the
distribution remains the same from which it is generated. (?)
Sampling algorithms

3.2.2. Particle filter
A sequential Monte Carlo algorithm is a particle filter.(?)

advanced reservoir simulation (lecture femke):
A particle filter is a Monte Carlo based method and is used in non-lineair models.

•Generate samples in parallel sequential over time and weight them according how good they are. Im-
portance sampling, this can be made very efficient.
•The weight is the normalised value of the pdf of the observations given model state.
•With each new set of observations the old weights are multiplied with the new weights, this will lead to one
particle with all the weight. A solution for this is resampling, were high-weight particles are duplicated and
low-weight particles abandoned.
•

3.3. Data
•InSAR LOS data (2009-2015) will be used and visualized to get familiar with the data and subsidence rates.
•GPS and levelling data.
•Reservoir data as gas production, wells etc. will be used.

Mogi	source,	after	
Dzurisin,	2007Increasingly	nonlinear



Data	assimilation	for	parameter	estimation
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Ps-InSAR

Geodetic	surface	
monitoring	network

Groundwater	
monitoring	wells

Flowrates,	bottom-hole	
pressure

Seismic

Geomechanical model

Reservoir	model

Data	assimilation
Well	logs

q Fluid flow:
– Permeability
– Porosity
– Pressure
– Saturation

q Geometry and geology
– Layering
– Faults and structure

q Geomechanics:
– Young’s 

modulus
– Poisson’s ratio

q Subsurface and surface data reduce 
uncertainties in geometry, parameters and 
state variables



State	and parameter	estimation
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Bayes’ rule:

𝑓(𝜓	|	𝐝) 	=
𝑓(𝐝|	𝜓)𝑓(𝜓)

𝑓(𝐝)
Where 𝜓	is the model state, and 𝐝	are the observations. Assume state 
evolution can be described by Markov process:

𝑑	𝜓	 = 	𝑔 𝜓; 𝛾 𝑑𝑡	 + 	𝑑𝛽,
With 𝛾 the model parameters. Then the minimum variance estimate 
becomes:

𝜓1 = 2𝜓	𝑓 𝜓 𝐝	 𝑑𝜓
�

�

In subsurface flow estimation, several methods are being commonly used:
1. Ensemble Smoother (Van Leeuwen and Evensen, 1996)
2. Ensemble Kalman Filter (Evensen, 1994)
3. Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
4. Ensemble Square Root Filter (e.g., Zhang et al, 2010)
5. Randomized Maximum Likelihood (Oliver et al, 1996)
6. Particle Filters (review: Van Leeuwen, 2009) 
7. Markov-Chain Monte Carlo (e.g., Oliver et al, 1996)



State	and parameter	estimation
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Ensemble (Kalman) methods for state and parameter estimation can be 
seen as a summation of representer functions involving error covariances
with coefficients:

𝜓4 𝐱, 𝛾, 𝑡∗ = 𝜓7 𝐱, 𝛾, 𝑡∗ +8𝑏:𝐫(𝐱, 𝛾, 𝑡∗)
<∗

:=>

Where the coefficients  𝑏: effectively weight a set of model realizations 
with their difference from the observations . 

This can also be written as:

𝜓4 𝐱, 𝛾, 𝑡∗ = 𝜓7 𝐱, 𝛾, 𝑡∗ + 𝐂@@𝐇B 𝐇𝐂@@
7 𝐇B + 𝐂CC

D>
(𝐝 − 𝐇𝜓7(𝐱, 𝛾, 𝑡∗))

With covariances 𝐂@@ and 𝐂CC representing uncertainty in model and data.
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Particle methods

q Start from Bayes:

𝑝G(𝜓	|	𝐝) 	=
𝑝C(𝐝|	𝜓)𝑝G	(𝜓)

𝑝C(𝐝)

q Approximate model probability density with ensemble of model 
realisations

𝑝G(𝜓) =
1
𝑁
8𝛿(𝜓 − 𝜓K)
<

K=>

q Minimum variance estimator is:

𝜓1 = 2𝜓	𝑝G 𝜓 𝐝	 𝑑𝜓
�

�
=
∫𝜓𝑝C(𝐝|	𝜓)𝑝G	(𝜓)𝑑𝜓
�
�
∫ 𝑝C(𝐝|	𝜓)𝑝G	(𝜓)𝑑𝜓
�
�

=
∑ 𝜓K𝑝C 𝐝 𝜓K)<
K=>
∑ 𝑝C 𝐝 𝜓K)<
K=>

q In essence: weigh each particle with difference observation-model
q Can be used as a smoother or as a filter

11



Parameters	and	sensitivities	in	subsidence	
parameter	estimation

• In these applications, the following (state) variables 
are observed:
– Surface deformation
– Reservoir pressure
– Oil or gas rate

• While the following parameters are assumed to be 
unknown:
– compaction coefficient/Young’s modulus
– (in case of Mogi) source strength
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12 3. Methodology

Figure 3.1: Coordinate system and geometric relations of the point pressure source, used to derive surface deformation (figure taken
from (Dzurisin, (2007))

3.2. Statistical part
3.2.1. Data assimilation
Data assimilation is a process where observational data is fused with scientific information. The following
components are needed to perform data assimilation, namely data and an a priori statistical model for the
state process. Data assimilation is viewed from a Bayesian perspective. (Wikle and Berliner, (2007)

Numerical sampling, also known as Monte Carlo techniques.(?) Gaussian distribution
Cauchy distribution
Class of datasets that are sequential data, an example are timeseries of deformation measurements. There
are stationary and nonstationary sequential distributions, where the stationary data evolves in time, but the
distribution remains the same from which it is generated. (?)
Sampling algorithms

3.2.2. Particle filter
A sequential Monte Carlo algorithm is a particle filter.(?)

advanced reservoir simulation (lecture femke):
A particle filter is a Monte Carlo based method and is used in non-lineair models.

•Generate samples in parallel sequential over time and weight them according how good they are. Im-
portance sampling, this can be made very efficient.
•The weight is the normalised value of the pdf of the observations given model state.
•With each new set of observations the old weights are multiplied with the new weights, this will lead to one
particle with all the weight. A solution for this is resampling, were high-weight particles are duplicated and
low-weight particles abandoned.
•

3.3. Data
•InSAR LOS data (2009-2015) will be used and visualized to get familiar with the data and subsidence rates.
•GPS and levelling data.
•Reservoir data as gas production, wells etc. will be used.

Mogi	source,	after	Dzurisin,	2007

Particle Filter	for Mogi point	source	of	subsidence

q Modeling 
subsidence with 
so-called Mogi 
sources, spherical 
sources of strain

q Computationally 
inexpensive: 
possible to create 
large ensembles in 
particle filter

q System set-up for 
assimilation of 
InSAR surface 
deformation 
measurements in 
the Groningen area

14
with	Karlijn	Beers,	Ramon	Hanssen

global atmospheric chemistry model with online fluid
dynamics the global OH concentration, its trend, and the
initial methylchloroform (MCF) concentration were es-
timated from MCF concentration observations in the
period 1975–95. After 200 model integrations the statistics
of mean and covariance converged to their final value. It
should be mentioned that only three parameters were
estimated, but the measurement operator (i.e., obtaining
the model equivalent of the observations by running the
full model) was rather complex. This is usually the case in
parameter estimation. Vossepoel and van Leeuwen (2007)
estimated the lateral mixing coefficients for temperature,
salinity, and momentum in the global ocean general cir-
culation model Océan Parallélisé (OPA) of 28 resolution
with meridional refinement to 0.58 in the tropics. Ob-
servations were obtained from a model run with mixing
coefficients derived from altimeter sea surface height
variability observations. About 10 000 coefficients were
estimated using 128 members. The method worked, but
showed that more particles were needed for convergence.
[Actually, to obtain good estimates the observations had
to be assimilated locally (i.e., only observations within a
58 radius were taken into account for each grid point, re-
ducing the number of observations per grid point to about
21). This is a form of localization, to be discussed later.]

3. Reducing the variance in the weights

Several methods exists to reduce the variance in the
weights (see, e.g., Doucet et al. 2001). We discuss here
sequential importance resampling, the marginal particle
filter and hierarchical models, because these are among
the few that can be applied directly to large-dimensional
problems. The first two methods ‘‘break with the past’’
in that they get rid of the weights of the particles accu-
mulated during previous assimilation steps. In resam-
pling methods the posterior ensemble is resampled so
that the weights become equal. In the marginal particle
filter the past is integrated out. Both methods do not
change the position of the particles in state space. In the
next section methods are discussed that do change the
positions of the prior particles in state space to improve
the likelihood of the particles. In hierarchical models one
tries to break up the full assimilation problem in a se-
quence of easier to solve smaller assimilation problems,
using the concept of conditional probability densities.

a. Resampling

The idea of resampling is simply that particles with
very low weights are abandoned, while multiple copies
of particles with high weight are kept for the posterior
pdf. Although the idea is old (Metropolis and Ulam
1944), it was reintroduced in the statistical literature by

Gordon et al. (1993). To restore the total number of
particles N, identical copies of high-weight particles are
formed. The higher the weight of a particle is, the more
copies are generated, such that the total number of
particles becomes N again. Sequential importance re-
sampling (SIR) does the above and makes sure that the
weights of all posterior particles are equal again, to 1/N.
Several resampling algorithms exist of which we discuss
four. The last one is a special application of Metropolis–
Hastings, which uses a chainlike procedure to resample
the particles.

SIR is identical to basic importance sampling but for
a resampling step after the calculation of the weights.
The ‘‘flowchart’’ reads (see Fig. 2) as

1) Sample N particles ci from the initial model proba-
bility density p(c0).

2) Integrate all particles forward in time up to the mea-
surement time [so, sample from p(cnjcn!1

i ) for each i].
3) Calculate the weights according to (13) and attach

these weights to each corresponding particle. Note
that the particles are not modified, only their relative
weight is changed!

4) Resample the particles such that the weights are
equal to 1/N.

5) Repeat steps 2, 3, and 4 sequentially until all obser-
vations up to the present have been processed.

FIG. 2. The particle filter with resampling, also called SIR. The
model variable runs along the vertical axis, the weight of each
particle corresponds to the size of the bullets on this axis. The
horizontal axis denotes time, with observations at a time interval
of 10 time units. All particles have equal weight at time zero. At
time 10 the particles are weighted according to the likelihood and
resampled to obtain an equal-weight ensemble.

4094 M O N T H L Y W E A T H E R R E V I E W VOLUME 137

Particle	filter	with	resampling	
(from	Van	Leeuwen,	2009)

InSAR data	of	2009-2010	subsidence	(mm)
Represent	compaction	of	reservoir	
by	Mogi	sources	at	well	locations



Reconstructed	subsidence	Groningen	2009-2010



Quality	of	reconstruction	Mogi	strength
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q Increasing number 
of Mogi sources, 
keeping ensemble 
size constant

– Increasing 
ambiguity

– Effectively 
decreasing 
search space

q Influence of 
observational error 
probability density 
function on 
performance

20 4. Simulation

• the Mogi model computes surface deformation with the Gaussian random generated source strengths,
N =1, one source strength for each Mogi source.

• a large amount of randomly Gaussian generated source strengths, N =1, ...n, are used to compute sur-
face deformation. This step generates many surface deformation ensembles.

• the observations and modelled surface deformation are weigthed with a Gaussian or Lorentz distribu-
tion, this step is the particle filter.

The output of the particle weights are used to compute an average mean of the surface deformation and the
source strenghts. The average means are compared with the observation and source strength of step one of
the twin experiment by the root mean square error (RMSE):

RMSE =

sPn
i=1(obsi °modi )2

n
, (4.1)

where n= the number of observations and modi the modelled output, like the weighted mean. An ideal twin
experiment will have a zero RMSE value.

4.1.1. Experiment 1: situation A
The first test situation of the identical twin experiment is shown in figure 4.2. The figure shows five synthetic
test situations, all the five situations shows Mogi sources at the same observation location. The observations
are equally spaced. The first one is a 1D situation with one observation and one Mogi source. The second is
a 2D situation with two observations and two Mogi sources. The third situation is a 3D situation with four
observations and four Mogi sources, fourth situation are nine observations and nine Mogi sources. The last
test situation is sixteen observations with sixteen Mogi sources to model the observations.

Figure 4.2: A) Five synthetic test situations: 1D with 1 observation and 1 Mogi source; 2D situation with 2 observations and 2 Mogi
sources; 3D situation with 4 observations and 4 Mogi sources; 9 observations and 9 Mogi sources; 16 observations and 16 Mogi sources.
•=Mogi source and ‰=observation

Table 4.1: Situation A, the distances, k, between the observations are varied four times, namely 1500, 3000 and 6000 [m]. Also the variance
of the particle filter is varied. The number of ensembles, N is fixed, the same for the Mogi source depth z=3000 [m] and the poisson’s
ratio ¿=0.25.

Step: 1 2 3

Source strength: æ2[mm] 0.5 0.5 -

start value [-] -1 -1 -

N 1 1000 -

Grid space: k [m] 1500, 3000, 6000 1500, 3000, 6000 -

Observation noise: æ2[mm] 25 - -

Particle filter: æ2[mm] - - 1, 10, 25, 100

The goal of this test situation is to find out how the particle filter behaves in a simple 1D, 2D, and 3D
situations and how the RMSE of the experiments change with increasing numbers of observations / Mogi
sources. And how the distances between the observations have or not have an influence on the RMSE value.
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Coupled	Flow-Geomechanical model	ADGPRS
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q Coupled reservoir-geomechanical model: AD-GPRS (Garipov et al, 2016, 
Voskov and Tchelepi, 2012)



Coupled	Flow-Geomechanical model	ADGPRS
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q Governing equations:

𝜕 𝜌7𝜙
𝜕𝑡

− 𝛻 ⋅ 𝜌7
𝑘
𝜇7
(𝛻𝑝 − 𝜌7𝑔) − 𝑞 = 0	

mass conversation and Darcy’s law

𝜙 = 𝜙W +	
XDYZ >DX

[\
𝑝 − 𝑝W + 𝑏(𝜖^ − 𝜖^, 𝑜)

constitutive equation skeleton, assuming elasticity (Coussy, 2004)

q Simplified geometry with full coupling, fully implicit methods makes 
model computationally efficient



Model	set-up	1D	ADGPRS
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1.4. GEOMECHANICS 9

Figure 1.3: Schematic of uniaxially constrained soil consolidation (after Craig, 1997,
p. 86). A compressive load −W is applied suddenly at time t = 0 to a uniaxially
confined sample of cross-sectional area A. The excess fluid pressure jumps to its
undrained value W/A to support the load. Stress is transferred partially to the solid
skeleton of the porous material (represented by the spring) until excess fluid pressure
is again zero for long times and the load is carried entirely by the solid framework.

cross-sectional area A. An axial load −W is applied suddenly at t = 0 and
then held constant. (Tensile stresses are taken to be positive.) The water pres-
sure throughout the sample jumps up by the amount p = W/A at t = 0+.
A profile of excess pressure develops within the sample as water flows out
the top drain, which is maintained at atmospheric pressure. Terzaghi derived
the consolidation equation for this experiment to be the diffusion equation
for excess (greater than hydrostatic) water pressure p,

∂p

∂t
= c

∂2p

∂z2
(1.1)

where c is a diffusivity that is known as the consolidation coefficient, t is
time, and z is distance along the soil column.
As will be demonstrated in Section 6.3, Eqn. 1.1 is independent of stress,

because the theory of poroelasticity leads to the special result that the pore
pressure field and applied stress field are uncoupled for the boundary con-
ditions in Terzaghi’s experiment. The time evolution of the pressure profile
is exactly the same as the analogous thermal conduction problem of a sud-
den step change (Carslaw and Jaeger, 1959, pp. 96–97), which was noted by
Terzaghi.

Terzaghi is generally recognized for elucidating the important concept of
effective stress, which for soils is well approximated to be the difference
between the applied stress and pore pressure, because the grains are incom-

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

q Terzaghi’s experiment: 
consolidation process where axial 
load is initially borne by fluid, and 
then shifted to skeletal frame

Terzaghi’s uniaxially constrained	soil	consolidation,	
Craig	1997

q Single column (19 cells)
q Deformation depends on bulk 

modulus 𝐾C, which depends on 
Young’s modulus and Poisson 
ratio



Intermediate results 1D	ADGPRS
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q 100 member ensemble for 
sensitivity study

q Varying Young’s modulus (E) 
and/or Poisson’s ratio (ν) in 
three subsurface layers

q Note: this 1D case is 
actually not as non-linear as 
a 3D case could be



Consolidation	results
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q Increasing number of unknowns, able to separate 
between the different rock properties for two top 
layers, for three layers this becomes challenging

q Comparison with Ensemble Kalman Filter and ES-
MDA ongoing

q Investigating PF adjustments:
– Incremental adjustments with adaptive weights (next slide)
– Regularized particle filter
– Proposal density function



Consolidation	results	PF	adjustments
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q Resampling with ‘jitter’
q Adaptive weighting in three iterations
q Further experiments ongoing…
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Agenda

• Introduction
• Modelling	subsidence
• Particle	filter	for	parameter	estimation
• Data	assimilation	experiments:

– Point	source	(Mogi)
– Fully	coupled	flow-geomechanical model	
(ADGPRS)

– Fault-slip	modeling	with	FEM	package	(Plaxis)

• Conclusions	and	Outlook
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Fault	reactivation	in	FEM	(Plaxis)

underburden

overburden

reservoir
Fault	plane

(Differential)	Compaction

0	MPa

40	MPa

35	MPa

15	MPa

20	MPa
depletion

1MPa	=	10	bar

Pressure [Mpa]Initial pressure situation: After 20	MPa depletion:

q Reservoir depletion on one 
side of a fault leads to 
differential pressure loading, 
which may lead to fault slip 
and induced seismicity



Vertical displacement	fault reactivation

Vertical displacement	[cm]

0	cm

- 22	cm

+6	cm

à Failure!!!



Failure	points	analysis

q At which pressure does fault failure occur?

3530252015105

Failure:	just before pore pressure is	20	MPa (Phase 6)

reservoir

reservoir

fa
ilu
re

Phase:								0- 2- 4- 6- 8- 10-12
Pressure:	35-30-25-20-15-10-5	MPa



Fault	reactivation	sensitivities

Geometry parameter Values

Reservoir	radius	[m] 500,	1000,	3000

Reservoir	thickness	[m] 50,	100,	200,	300

Fault angle [deg] 60,	79,	90,	101,	(70,	120,	160,	20)

Fault throw [m] 0,	+30,	-30,	+100,	-100,	+	res.	thickness,	- res.	thickness

Rock/Fault parameter Base Min Max Variations

E	(Young’s	modulus)	[GPa] 15 5 25 9

v	(Poisson’s	ratio) 0,15 0,1 0,3 6

C	(Cohesion)	[MPa] 0 0 10 5

Phi	(friction	angle)	[deg] 25 15 40 9

e.g.	fault angle: 90º 79º 60º 101º



Fault	reactivation	sensitivities

q Probability distributions 
derived from sensitivity 
studies for internal friction 
angle, Young’s modulus, 
Poisson’s ratio and a tuning 
factor for poro-elastic 
loading

q Shape of distribution can be 
used as a measure of 
sensitivity for each of the 
parameters

q Use these distributions for 
perturbations for data 
assimilation with sequential 
Monte Carlo methods



Data	assimilation	for	fault	slip	modelling

q Collaboration with Ylona
van Dinther and Marie 
Bocher (ETH Zürich)

q Understanding fault slip 
will help monitor and 
forecast earthquakes 
and their consequences

q Fault slip strongly 
depends on initial fault 
stresses and parameters

q Can we make use of 
what we know from 
observations? …and 
from laboratory 
experiments?

30
seismogenic zone

aseismic zone

gelatine

subducting plate



Data	assimilation	for	fault	slip	-results	so	far

q Ensemble Kalman filter as a 
tool to estimate and forecast 
synthetic slip of laboratory 
earthquakes

q Updating the stress and 
strength fields using 
observations of borehole 
velocity, stress, and 
pressure in a simplified 
subduction zone 

a)

e)

d)

c)

f)

b)

Data assimilation results

Model

Data

Limited	applicability	of	the	Ensemble	Kalman Filter	to	
strongly	non-linear	problems	may	be	overcome	by	
using	the	Particle	Filter	for	data	assimilation.



Conclusions	and	outlook
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q Conclusions
– A variety of models and data assimilation approaches are tested to 

infer reservoir compaction from subsidence observations
– Non-linearities and coupled models ask for Sequential Monte-Carlo 

methodologies

q Outlook
– Focus on more strongly nonlinear processes: 

• 3D heterogeneities in subsidence
• fault slip and seismicity

– Investigate Hybrid Monte Carlo/EnKF assimilation methods
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