

Modelling subsidence: On the use of the particle filter for geomechanical parameter estimation

Femke Vossepoel Delft University of Technology

With contributions of Denis Voskov, Karlijn Beers, Ramon Hanssen, Mohamed Bazaoui, Irene Platteeuw (TU Delft) and Ylona van Dinther (ETH Zürich)

Agenda

- Introduction
- Modelling subsidence
- Particle filter for parameter estimation
- Data assimilation experiments:
 - Point source (Mogi)
 - Fully coupled flow-geomechanical model (ADGPRS)
 - Fault-slip modeling with FEM package (Plaxis)
- Conclusions and Outlook

Introduction

Examples of subsidence

1. Louisiana wetlands: fault activation (USGS)

3. Groningen: seismic effects

2. Venice: mixed effect of groundwater and gas extraction

Subsidence, induced seismicity

- Subsidence to first order related to pressure drop in reservoir (e.g. Geertsma, 1963)
- Relation with induced and natural seismicity poorly understood, for example in Groningen, San Jacinto.

Basel.

Difference between calculated and modeled subsidence indicated at benchmark locations. *Van Thienen-Visser et al (2015)*

Geodetic monitoring

 Subsidence can be observed with satellites (InSAR, GPS) as well as in situ techniques (levelling)

Subsidence and uplift at Egehlpfuhl (N of Potsdam) as observed by Sentinal-1 InSAR

Haghshenas and Motagh (GFZ & Leibniz Uni. Hannover), Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 2017, www.geodaesie.info

http://comet.earth.ox.ac.uk/for_schools_radar4.html

https://ca.water.usgs.gov/land_subsidence/california-subsidence-measuring.html

Modelling subsidence due to reservoir compaction

- **Time-independent deformation**
 - **model**: represent reservoir compaction with a point source, following **Mogi** (1958).
- Finite element geomechanical model with single fluid flow (e.g. Plaxis)
- Apply compaction model to reservoir pressure field: Geertsma's analytical solution (1963), in combination with a timedependent pressure distribution from a multi-layer reservoir model.
- Fully coupled flow-geomechanics: FEM geomechanical model coupled to finite difference model reservoir flow, e.g. ADGPRS (Garipov et al, 2016, Voskov and Tchelepi, 2012)
- Integrated model that includes geomechanics and multi-fluid, multiphase flow

Data assimilation for parameter estimation

- Pressure
- Saturation
- Geometry and geology
 - Layering
 - Faults and structure

 Subsurface and surface data reduce uncertainties in geometry, parameters and state variables

State and parameter estimation

Bayes' rule:

$$f(\psi \mid \mathbf{d}) = \frac{f(\mathbf{d} \mid \psi)f(\psi)}{f(\mathbf{d})}$$

Where ψ is the model state, and **d** are the observations. Assume state evolution can be described by Markov process:

$$d\psi = g(\psi;\gamma)dt + d\beta,$$

With γ the model parameters. Then the minimum variance estimate becomes:

$$\hat{\psi} = \int \psi f(\psi | \mathbf{d}) d\psi$$

In subsurface flow estimation, several methods are being commonly used:

- 1. Ensemble Smoother (Van Leeuwen and Evensen, 1996)
- 2. Ensemble Kalman Filter (Evensen, 1994)
- 3. Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
- 4. Ensemble Square Root Filter (e.g., Zhang et al, 2010)
- 5. Randomized Maximum Likelihood (Oliver et al, 1996)
- 6. Particle Filters (review: Van Leeuwen, 2009)
- 7. Markov-Chain Monte Carlo (e.g., Oliver et al, 1996)

Ensemble (Kalman) methods for state and parameter estimation can be seen as a summation of representer functions involving error covariances with coefficients:

$$\psi^{a}(\mathbf{x}, \gamma, t^{*}) = \psi^{f}(\mathbf{x}, \gamma, t^{*}) + \sum_{n=1}^{N^{*}} b_{n} \mathbf{r}(\mathbf{x}, \gamma, t^{*})$$

Where the coefficients b_n effectively weight a set of model realizations with their difference from the observations .

This can also be written as:

$$\psi^{a}(\mathbf{x},\gamma,t^{*}) = \psi^{f}(\mathbf{x},\gamma,t^{*}) + \mathbf{C}_{\psi\psi}\mathbf{H}^{T}\left(\mathbf{H}\mathbf{C}_{\psi\psi}^{f}\mathbf{H}^{T} + \mathbf{C}_{dd}\right)^{-1}\left(\mathbf{d} - \mathbf{H}\psi^{f}(\mathbf{x},\gamma,t^{*})\right)$$

With covariances $C_{\psi\psi}$ and C_{dd} representing uncertainty in model and data.

Ensemble (Kalman) methods for state and parameter estimation can be seen as a summation of representer functions involving a for covariances with coefficients:

$$\psi^{a}(\mathbf{x}, \gamma, t^{*}) = \psi^{f}(\mathbf{x}, \gamma, t^{*}) + \mathbf{y}^{T}(\mathbf{x}, \gamma, t^{*})$$

Where the coefficients b_n effective eight a set of model realizations with their difference from the other vations.

This can also be writter

With covariances $C_{\psi\psi}$ and C_{dd} representing uncertainty in model and data.

Particle methods

□ Start from Bayes:

$$p_m(\psi \mid \mathbf{d}) = \frac{p_d(\mathbf{d} \mid \psi) p_m(\psi)}{p_d(\mathbf{d})}$$

Approximate model probability density with ensemble of model realisations

$$p_m(\psi) = \frac{1}{N} \sum_{i=1}^N \delta(\psi - \psi_i)$$

Minimum variance estimator is:

$$\hat{\psi} = \int \psi \, p_m(\psi | \mathbf{d} \,) d\psi = \frac{\int \psi p_d(\mathbf{d} | \psi) p_m(\psi) d\psi}{\int p_d(\mathbf{d} | \psi) p_m(\psi) d\psi} = \frac{\sum_{i=1}^N \psi_i p_d(\mathbf{d} | \psi_i)}{\sum_{i=1}^N p_d(\mathbf{d} | \psi_i)}$$

Parameters and sensitivities in subsidence parameter estimation

- In these applications, the following (state) variables are observed:
 - Surface deformation
 - Reservoir pressure
 - Oil or gas rate
- While the following parameters are assumed to be unknown:
 - compaction coefficient/Young's modulus
 - (in case of Mogi) source strength

Agenda

- Introduction
- Modelling subsidence
- Particle filter for parameter estimation
- Data assimilation experiments:
 - Point source (Mogi)
 - Fully coupled flow-geomechanical model (ADGPRS)
 - Fault-slip modeling with FEM package (Plaxis)
- Conclusions and Outlook

Particle Filter for Mogi point source of subsidence

- Modeling subsidence with so-called Mogi sources, spherical sources of strain
- Computationally inexpensive: possible to create large ensembles in particle filter
- System set-up for assimilation of InSAR surface deformation measurements in the Groningen area

atitude [decimal degrees]

with Karlijn Beers, Ramon Hanssen

InSAR data of 2009-2010 subsidence (mm)

Particle filter with resampling (from Van Leeuwen, 2009) weighting resampling weighting

t = 10

Represent compaction of reservoir by Mogi sources at well locations

t=10

t=20

t=0

14

Reconstructed subsidence Groningen 2009-2010

Quality of reconstruction Mogi strength

- Increasing number of Mogi sources, keeping ensemble size constant
 - Increasing ambiguity
 - Effectively
 decreasing
 search space
- Influence of
 observational error
 probability density
 function on
 performance

Agenda

- Introduction
- Modelling subsidence
- Particle filter for parameter estimation
- Data assimilation experiments:
 - Point source (Mogi)
 - Fully coupled flow-geomechanical model (ADGPRS)
 - Fault-slip modeling with FEM package (Plaxis)
- Conclusions and Outlook

Coupled Flow-Geomechanical model ADGPRS

 Coupled reservoir-geomechanical model: AD-GPRS (Garipov et al, 2016, Voskov and Tchelepi, 2012)

Coupled Flow-Geomechanical model ADGPRS

Governing equations:

$$\frac{\partial(\rho_f \phi)}{\partial t} - \nabla \cdot \left[\rho_f \frac{k}{\mu_f} (\nabla p - \rho_f g) \right] - q = 0$$

mass conversation and Darcy's law

$$\phi = \phi_0 + \frac{(b - \phi_0)(1 - b)}{K_d} (p - p_0) + b(\epsilon_v - \epsilon_v, o)$$

constitutive equation skeleton, assuming elasticity (Coussy, 2004)

Simplified geometry with full coupling, fully implicit methods makes model computationally efficient

Model set-up 1D ADGPRS

□ Terzaghi's experiment:

consolidation process where axial load is initially borne by fluid, and then shifted to skeletal frame © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Terzaghi's uniaxially constrained soil consolidation, Craig 1997

- □ Single column (19 cells)
- Deformation depends on bulk modulus *K_d*, which depends on Young's modulus and Poisson ratio

Intermediate results 1D ADGPRS

Consolidation results

- Incremental adjustments with adaptive weights (next slide)
- Regularized particle filter
- Proposal density function

Consolidation results PF adjustments

- Resampling with 'jitter'
- Adaptive weighting in three iterations
- □ Further experiments ongoing...

Agenda

- Introduction
- Modelling subsidence
- Particle filter for parameter estimation
- Data assimilation experiments:
 - Point source (Mogi)
 - Fully coupled flow-geomechanical model (ADGPRS)
 - Fault-slip modeling with FEM package (Plaxis)
- Conclusions and Outlook

Fault reactivation in FEM (Plaxis)

 Reservoir depletion on one side of a fault leads to differential pressure loading, which may lead to fault slip and induced seismicity

Initial pressure situation:

1MPa = 10 bar

Vertical displacement fault reactivation

□ At which pressure does fault failure occur?

Pressure: 35-30-25-20-15-10-5 MPa

b79 & G06515.0

Phase 0

-2500

Failure: just before pore pressure is 20 MPa (Phase 6)

Geometry parameter	Values
Reservoir radius [m]	500, 1000, 3000
Reservoir thickness [m]	50, 100, 200, 300
Fault angle [deg]	60, 79, 90, 101, (70, 120, 160, 20)
Fault throw [m]	0, +30, -30, +100, -100, + res. thickness, - res. thickness

Rock/Fault parameter	Base	Min	Max	Variations
E (Young's modulus) [GPa]	15	5	25	9
v (Poisson's ratio)	0,15	0,1	0,3	6
C (Cohesion) [MPa]	0	0	10	5
Phi (friction angle) [deg]	25	15	40	9

e.g. fault angle:

Fault reactivation sensitivities

- Probability distributions derived from sensitivity studies for internal friction angle, Young's modulus, Poisson's ratio and a tuning factor for poro-elastic loading
- Shape of distribution can be used as a measure of sensitivity for each of the parameters
- Use these distributions for perturbations for data assimilation with sequential Monte Carlo methods

Data assimilation for fault slip modelling

- Collaboration with Ylona van Dinther and Marie Bocher (ETH Zürich)
- Understanding fault slip will help monitor and forecast earthquakes and their consequences
- Fault slip strongly depends on initial fault stresses and parameters
- Can we make use of what we know from observations? ...and from laboratory experiments?

Data assimilation for fault slip -results so far

- Ensemble Kalman filter as a tool to estimate and forecast synthetic slip of laboratory earthquakes
- Updating the stress and strength fields using observations of borehole velocity, stress, and pressure in a simplified subduction zone

Limited applicability of the Ensemble Kalman Filter to strongly non-linear problems may be overcome by using the Particle Filter for data assimilation.

Conclusions and outlook

Conclusions

- A variety of models and data assimilation approaches are tested to infer reservoir compaction from subsidence observations
- Non-linearities and coupled models ask for Sequential Monte-Carlo methodologies
- Outlook
 - Focus on more strongly nonlinear processes:
 - 3D heterogeneities in subsidence
 - fault slip and seismicity
 - Investigate Hybrid Monte Carlo/EnKF assimilation methods

