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@ Preliminaries on Kernel Methods
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Feature maps
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@ No linear classifier separates red from blue.

@ Linear separation after mapping to a higher dimensional feature space:

R*> (2@ 23 )T =z = @)=
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Feature maps and kernel trick

o Kernel methods on a generic domain X allow constructing nonlinear methods
after mapping to a higher dimensional feature space:

p: X > RP
e Typically need only inner products o(z;) T ¢(x;) are required and the
coordinates of the maps (x;) € RP need not be computed explicitly - inner
product between features can be a simple function (kernel) of z; and x;.
@ For example, polynomial kernel k(z;, ;) = ¢o(x;) "o(z;) = (1 + 2] 2;)? on
RP computes g-order features - never need to compute explicit feature
expansion of dimension D = (p‘;q) where this inner product is defined.

e Formally, a (reproducing) kernel k& is any function k : X x X — R for which
there exists a Hilbert space H and a map ¢ : X — H s.t.
k(z,z") = {(p(x), p(z'))g for all z, 2’ € X.
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and A be a Hilbert space of real-valued functions
defined on X. A function k: X x X — R is called a reproducing kernel of H if:
Q@ Vze X, k(,z) € H, and
Q@ Ve X, VfeH, (fk(,x))y="Ff(2)
If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

y

In particular, for any z,y € X, k(z,y) = (k(-,y) . k (- 2))n = (k (- 2) k(- 9)n.
Thus H servers as a canonical feature space with feature map = — k(-, ).

e Equivalently, all evaluation functionals f — f(z) are continuous (norm
convergence implies pointwise convergence).

@ Moore-Aronszajn Theorem: every positive semidefinite k : X x X - R is a
reproducing kernel and has a unique RKHS #,.
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Reproducing Kernel Hilbert Space (RKHS)

Deflnition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X. A function k: X x X — R is called a reproducing kernel of H if:

Q@ Vxe X, k(,x) e H, and
Q@ Vze X, VfeH, (fk(,z))y = f(z).
If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

v

Gaussian RBF kernel k(z, ") = exp (7# |z — :z:’||2) has an infinite-dimensional

H with elements h(z) = Y"1 | a;k(z;,x) and their limits which give completion

with respect to the inner product 1
n m 0.8
<Z alk(xla)726]k(yj7)> = 0.6
i=1 Jj=1 0.4
n m 0.2
DD cibik(iy;). ;
i=1 j=1
-0.2
04 -4 -2 0 2 4 6 8
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Kernel Trick and Kernel Mean Trick

o implicit feature map = +— k(-,x) € Hy,
replaces = +— [¢1(x), ..., ¢s(x)] € R®
° <k(,l‘),k(,y>>7_¢k = k’(ﬂl‘,y)

inner products readily available

hyperplane

e nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schdlkopf &
Smola, 2001]
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Kernel Trick and Kernel Mean Trick

o implicit feature map x — k(-,z) € Hy, o e l N\ |
replaces = +— [¢1(x), ..., ¢s(x)] € R® * _ See
° <k(,l‘),k(,y)>7_¢k = k’(ﬂl‘,y) o B ° ./

inner products readily available

hyperplane

o . .. . . .
nonlinear decision boundaries, nonlinear regression [Cortes & Vapnik, 1995; Schalkopf &

functions, learning on non-Euclidean/structured

data Smola, 2001]
@ RKHS embedding: implicit feature mean ) B0
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, X”P.
2017] 14(Q) = Ey k(. V)]
P pp(P)=Ex.pk(-,X) € Hy, ﬂ‘ (P @l
replaces P — [E¢y(X),...,E¢s(X)] € R®
o <,Uk(P)7 'u“k(Q»’Hk = EXNP,YNQK(X, Y) [Gretton et al, 2005; Gretton et al,
inner products easy to estimate 2006; Fukumizu et al, 2007; DS et
e nonparametric two-sample, independence, al, 2013; Muandet et al, 2012;
conditional independence, interaction testing, Szabo et al, 2015]

learning on distributions

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Potsdam, 25/05/2018 5/ 31



Maximum Mean Discrepancy

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

e(P) = Ex[k(-, X)]

X ~
. 04

m(Q) =Ev[k(-, V)]
Y~Q o——m o

‘. . (1124 (P) = 1 (Q) 14 o

MMDy. (P, Q) = [lps (P) = i (Q)lyy,, = sup [Ef(X) —E/(Y)
FEMk: 111, <1
o Characteristic kernels: MMDy (P, Q) = 0 iff
P = @ (also metrizes weak*
[Sriperumbudur,2010]).

o Gaussian RBF exp(— 15 ||z — 2'|3),

Matérn family, inverse multiquadrics.

@ Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text... %
Approximate Kernel Embeddings




Some uses of MMD

MMD has been applied to:

@ two-sample tests and independence tests

within-sample average similarity (On graphs, text, aUdlo---) [Gretton et al,
= 2009, Gretton et al, 2012]

betweef‘;saf‘"p'e average similarity @ model criticism and interpretability [Lioyd &
”“( - W Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

@ analysis of Bayesian quadrature [Briol et al,
2018]

Rt
- .
p dog;, dog;) k(dog;, fish;)
‘ E @ ABC summary statistics [Park, Jitkrittum &
- DS, 2015; Mitrovic, DS & Teh, 2016]
=),
i @ summarising streaming data [Paige, DS &

k(fish;, dog;) fish;, fish, ) % Wood, 2016]

ot @ traversal of manifolds learned by

@)&« convolutional nets [Gardner et al, 2015]

@ MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;
Sutherland et al, 2017; Li et al, 2017]

Figure by Arthur Gretton

MMDE (P, Q) =E i k(X X)+E 0 k(YY) = 2Ex~py~ok(X,Y).
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Some uses of MMD

MMD has been applied to:

1)
within-sample average similarity

between-sample average similarity °
""‘ Tm? W

’0‘( )

R :
p dog;, dog;) k(dog;, fish;)
= ’
Z)
- |

k(fish;, dog;) fishy, fish, ) ﬁ

two-sample tests and independence tests
(on graphs, text, audio...) [Gretton et al,
2009, Gretton et al, 2012]

model criticism and interpretability [Lioyd &
Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,
2018]

ABC summary statistics [Park, Jitkrittum &
DS, 2015; Mitrovic, DS & Teh, 2016]

summarising streaming data [Paige, DS &
Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

Figure by Arthur Gretton @ MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;
Sutherland et al, 2017; Li et al, 2017]
MMD? (P, Q) = Zk X, X5) Zk YY) —Zk(XZ,Y
na(ne — Z#J ny(ny l#]
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Kernel dependence measures: HSIC

o HSIC*(X,Y;k) = |lux(Pxy) — pu(Px Py)ll3,,

S s - — o~ N @ Hilbert-Schmidt norm of the feature-space
A cross-covariance [Gretton et al, 2009]
o« . . .
e e e e @ dependence witness is a smooth function in the
VN e -\ <X O I RKHS H,. of functions on X’ x

cor vs. dcor k’(,) l(@, Q)
Dependence witness and sample ,
1 - . x([@o/0e) =
2 K(@,0) x 1(©,[0)

0.02

0.01

> 9 @ Independence testing framework that generalises
N " Distance Correlation (dcor) of [Szekely et al, 2007]:
o0 HSIC with Brownian motion kernels [DS et al, 2013]

-0.03

@ Extends to multivariate interaction and joint
-0.04
e dependence measures [DS et al, 2013; Pfister et al,
2017]

xo

Figure by Arthur Gretton
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Distribution Regression

. I ~

-0.856 0.562 1.39
Labels y; = f(P;) but observe only {xf}jvzl ~ P;.

The goal' build a predictive model ¢, = f({xi}jvz*l) for a new sample
{m* N ~ P,

Represent each sample with the empirical mean embedding

fli = 7 Z;v:1 k(- x]) € M.

@ Now can use the induced inner product structure on empirical measures to
build a regression model:

e Linear kernel on the RKHS: K (fii, fi;) = (fii; 1)), = w5 N > Kz, x5)
e Gaussian kernel on the RKHS: K (fi;, fi;) = exp(—~||f: — ,u]HHk)
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Distribution Regression
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-0.856 0.562
Labels y; = f(P;) but observe only {xf}j\;l ~ P;.

The goal' build a predictive model ¢, = f({xi};vz*l) for a new sample
{m* N ~ P,

Represent each sample with the empirical mean embedding

i = N Z;v:1 k(- x]) € M.

@ Now can use the induced inner product structure on empirical measures to
build a regression model:

e Linear kernel on the RKHS: K (fii, fi;) = (fii; 1)), = w5 N > Kz, x5)
e Gaussian kernel on the RKHS: K (fi;, fi;) = exp(—~||f: — ,u]HHk)
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Distribution Regression

@ supervised learning where labels are available at the group, rather than at the

individual level.

S

feature space

2 "y 3 H2

) men
® women

* both

region 1 rogion 2 region 3

Figure from Flaxman et al, 2015
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Figure from Mooij et al, 2014

classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
image labels based on a distribution of small patches [Szabo et al, 2016]
“traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]

sample [Lopez-Paz et al,2015]

D.Sejdinovic (University of Oxford)
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identify the cause-effect direction between a pair of variables from a joint
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Kernel methods at scale

@ Expressivity of kernel methods comes at a price of O(n?) or O(n?) in the
number of observations n (due to having to compute, store and often invert
the Gram matrix)

@ Problematic when we have a lot of observations (and this is exactly when we
want to use a rich expressive model with a high-dimensional hypothesis class!)

@ Scaling up kernel methods is a very active research area
[Sonnenburg et al, 2006; Rahimi & Recht, 2007; Le, Sarlos & Smola, 2013; Wilson et al, 2014; Dai
et al, 2014; Sriperumbudur & Szabo, 2015; Bach, 2015; Avron et al, 2017].

@ Main idea: study the RKHS and construct a (random) low-dimensional space
with similar inner product structure for a given data - then undo the kernel
trick(1?)

explicit basis functions

1

implicit basis functions

1

explicit random basis functions
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Random Fourier features: Inverse Kernel Trick

Bochner's representation: Assume that & is a positive definite translation-invariant
kernel on RP. Then k can be written as

k(z,y) = /Rp exp (in(x - y)) dA(w)

2/ {cos (wTac) cos (wTy) + sin (wa) sin (wTy) }dA(w)
RP

for some positive measure (w.l.o.g. a probability distribution) A.

e Sample m frequencies Q2 = {wj} ~ A and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

l;(x, y) = — Z {cos w;rx) cos (w y) + sin (w;r:c) sin (w;ry)}
j 1

= (Sal(2); Ca(y))rem,

with an explicit set of features {q: z — (/2

= [cos (wlTL) ,sin (wlTx) yee .]T.

@ The cost drops: O(n?) — O(m?n +m?), O(n?) — O(mn + m?). How fast
does m need to grow with n? Often sublinear and can be as low as logn
without sacrificing convergence rates [Bach, 2015; Rudi et al, 2017, Avron et al, 2017].

Approximate Kernel Embeddings



This talk:

o How to model uncertainty of kernel embeddings in distribution regression?

e A simple Bayesian model for kernel mean embeddings leads to shrinkage
estimators with better predictive performance in high noise regimes.

@ When measuring nonparametric distances between distributions, can we
disentangle the differences in the noise from the differences in the signal?

e Weighted distance between the empirical phase functions can lead to
distribution regression which is more robust to changes in measurement noise.
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© Bayesian Approaches to Distribution Regression
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Uncertainty in Bag Sizes

-
o o o
...Q‘..
o 2 o
o ® o0 0
° .

-0.856 0.562
@ Recall: we represent each sample with the empirical mean embedding
fli = N% Z;V:ll k(- 27) € Hi.
@ Empirical mean in infinite-dimensional space? Stein's phenomenon?
Shrinkage estimators can be better behaved [Muandet et al, 2013]
@ These inputs (with or without shrinkage) are noisy - we do not observe the
true embedding ;. Moreover, bags with small N; are noisier - can this
uncertainty be included in the predictive model?

Bayesian Approaches to Distribution Regression
Ho Chung Leon Law, Dougal Sutherland, DS, and Seth Flaxman

AISTATS 2018
http://proceedings.mlr.press/v84/lawl8a.html
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Uncertainty in Mean Embeddings

@ The empirical mean embedding is ji; = NL Z;V:ll k‘(,xf) € Hi
@ Bayesian model for kernel mean embeddings [Flaxman,DS,Cunningham & Filippi, UAI
2016]:
e Place prior on the RKHS p; ~ GP (mo(-),7(+,-)) (requires care due to 0/1
laws [Kallianpur, 1970; Wahba, 1990; Steinwart, 2014+])
e Posit normal likelihood for the evaluations of the embedding at a set of points
u:
fui (@) |pi(u) ~ N (pi(a), 3 /N:)

e Leads to a closed-form GP posterior ju;|{z}:
@)~ A (R (B4 50/ N0 s = o) + i,

Rzz - Rzu(Ruu + Zi/Ni)_lRUZ>

e Recovers frequentist shrinkage estimator of mean embeddings [Muandet et al,
2013] (but with r instead of k), similar to James-Stein estimator.
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Distribution Regression Model

@ Model label as a function of the “true” kernel mean embedding:
yi:f(,u/i>+65 /J/i:EXNPik("X)

@ Linear model on the evaluation of kernel mean embedding at a set of

“landmark points” z:

F(ui) = BT pi(=)

@ Can model uncertainty in 8 (BLR) or in u; (shrinkage) or in both (BDR,

which requires MCMC due to non-conjugacy).
o Shrinkage: Integrate likelihood y; ~ N (f(u;),0?) through the posterior

wil{z]} to obtain

vi [ {2}, 8~ N'(&],v))
Xi\ —1,n
6;6 = /BTRZXi (inxi + N) 1(/f('i - mO) + 6Tm0

2\ 7!
o =T (Rzz — Ry, <inx7., + N> RL) B+ o
o Can be optimized to find MAP of 3, 02, kernel parameters, locations of
landmark points, ...
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Age prediction from images

75

age

IMDb-Wiki database of images with age labels

e Very noisy labels in the dataset
Distribution regression: group pictures of actors, predict mean age
Image features: last hidden layer from a convolutional neural network by
[Rothe et al, [JCV 2016]
o Lots of variation in N;:

w10t

§103 N; = 1: 23% of bags Jennifer Aniston
%5102 Brad Pitt

2101 Angelina Jolie \

IS

2 108 WWWM“ MII‘\” HH ‘HHH [ \I \| ‘IH [T |

o

100 200 300 400 600 700 800
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Age prediction from images

Propagating uncertainty using shrinkage helps!

10.5
CNN
w 10.0
2
& _|BLR
95 shrinkage RBF network

3.6 3.7 3.8
NLL

Figure: Results across ten data splits (means and standard deviations). RBF net is tuned
for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of
[Rothe-1JCV-2016] for each point in the bag.
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© Learning on Distributions with Symmetric Noise Invariance
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The problem with test bags

D.Sejdinovic (University of Oxford)

@ supervised learning where labels are available at the group, rather than at the

individual level.

M1 Iz 13 Iz
A men
= women
2 *both
= 2 3
wt} 3
vl , " rh w23
= nly
. 3
3 28 gt z
ry w3 3 2
region 1 Tegion 2 Tegion 3

Figure from Flaxman et al, 2015
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R e

Figure from Mooij et al, 2014

e aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
o identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]

@ Possible (distributional) covariate shift?

Approximate Kernel Embeddings
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Bag-specific noises in Distribution Regression

308

[ LB

39

38.5

38

a7.8

-102 101 100 -99 98 97 96 -95

figures from Wang et al, 2012

Aerosol / Crop Yield prediction from multispectral data [wang et al, 2012]:
@ The labels y; provided by the ground sensors (aerosol), government records

(crop yield)

e “Multiple-instance regression”: randomly subsample multispectral (16-dim)
pixels (satellite imaging data) within 20km radius of ground sensor (aerosol)

/ within a county (crop yield)
o Large image variability due to surface properties.
o Arguably different noise distribution (“cloudy pixels”) in different images.
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All possible differences between generating processes?’

o differences between embeddings can be due to different types of
measurement noise or data collection artefacts

e With a large sample-size, uncovers potentially irrelevant sources of variability

o Covariate shift in distribution regression?

e Each bag of observations could be impaired by a different measurement noise
process. Also, test bags could have different measurement noise than train
bags.

@ Both problems require learning a representation invariant to some form of a

noise model (here we will assume that the noise is symmetric and the signal
is asymmetric).

Testing and Learning on Distributions with Symmetric Noise Invariance
Ho Chung Leon Law, Chris Yau, and DS

NIPS 2017

https://arxiv.org/abs/1703.07596
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Random Fourier features: Inverse Kernel Trick

Bochner’s representation: Assume that k is a positive definite
translation-invariant kernel on R?. Then k can be written as

k(z,y) = /Rp exp (in(x —y)) dA(w)

2 . {cos (w'x) cos (w'y) +sin (w'z) sin (w'y) } dA(w)

for some positive measure (w.l.o.g. a probability distribution) A.

e Sample m frequencies Q) = {wj};."zl ~ A and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k(z,y) = % Z {cos (w;rx) cos (w;ry) + sin (w;rm) sin (w;ry)}
=1
= <§Q(‘T")a fQ(y>>R2m7

with an explicit set of features £o:  +— \/% [cos (w{ @) ,sin (w] z),.. .]T.
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Characteristic Functions and (Approximate) Kernel Embedding

Approximate mean embedding using random Fourier features [Rahimi & Recht, 2007] is
simply the evaluation (real and complex part stacked together) of the
characteristic function at the frequencies {w; };":1 ~ A:

®(P) = Ex~pla(X)
\/ZEXNP [cos (wirx) ,sin (w?x) y...,COS (w;x) ,sin (w;x)] !

If k is translation-invariant, MMD becomes the weighted Lo-distance between the
characteristic functions of P and @ [Sriperumbudur, 2010].

lnr = nelli = [ | lor (@)~ oo @) dh @),

Used for distribution regression [Sutherland et al, 2015] and for sketching / compressive
learning [Keriven et al, 2016].
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The Noise and the Signal

The key idea comes from nonparametric deconvolution of [Delaigle and Hall, 2016].

o define a symmetric positive definite (SPD) noise component to be any
random vector E on R? with a positive characteristic function,
¢p(w) =Ex~p [exp(iw' E)] >0, Vw € R? (but E is not a.s. 0)
e symmetric about zero, i.e. E and —F have the same distribution
e if E has a density, it must be a positive definite function
e spherical zero-mean Gaussian distribution, as well as multivariate Laplace,
Cauchy or Student’s ¢ (but not uniform).

o define an (SPD-)decomposable random vector X if its characteristic function
can be written as px = px,¢r, with E SPD noise component.

@ Big modelling assumption: only the indecomposable components of
distributions are of interest.
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Phase Discrepancy and Phase Features

[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density fy of X with observations X; ~ Xq + E. E has unknown
SPD distribution. Matching phase functions:

px (w) = m = exp (itx (w))
Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y) = / ox (@) = py (@) dA (@)

for some spectral measure A.
Trivial to construct phase distribution embeddings by simply normalising standard
approximate mean embeddings to unit norm:

1 B, (X) E,, (X)
TP = \/; {Eém COIT IBE,, (X)]
where &,,,(@) = [cos (w] @), sin (w] @)].
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Synthetic Example

0; "~ T(a,8), 2 "= U0,0],
(X010, 7, v DOIRL2) | v, 7,

20,

e Goal: Learn a mapping {X7} — 6;
for Semi-Automatic ABC [Fearnhead
and Prangle, 2010; Mitrovic, DS, and Teh,
2016].

D.Sejdinovic (University of Oxford)
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0.05(¢——

=—= Fourier
«— Phase
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Noise Level o

0.00

Figure: MSE of 6, using the Fourier and
phase neural network based SA-ABC
averaged over 100 runs. Here noise o is
varied between 0 and 3.5, and the 5" and
the 95" percentile is shown.
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Learning Phase Features

Output Layer

Batch Normalisation Layer

Normalisation I I3 (X)
!

Mean Pooling 1o(X)

[ —
W 005(/10()()) ]
.
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Approximate Kernel Embeddings

@ Given a supervised signal, we can also

optimise a set of frequencies {w; }!™, that
will give us a useful discriminative
representation. In other words, we are no
longer focusing on a specific
translation-invariant kernel k (specific A),
but are learning Fourier/phase features.

A neural network with one hidden layer,
coupled cos/sin activation functions, mean
pooling and normalisation.

Straightforward implementation in
Tensorflow

(code: https://github.com/hcllaw/
Fourier—Phase—Neural—Network)
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Aerosol MISR1 Dataset (wane e 21, 2012 with Covariate Shift

oo} NSRS SR b
769 768 767 766 765 764

figure from Wang et al, 2012

@ Aerosol Optical Depth
(AOD) multiple-instance
learning problem with 800
bags, each containing 100
randomly selected 16-dim
multispectral pixels
(satellite imaging) within
20km radius of AOD
sensor.

D.Sejdinovic (University of Oxford)

The test data is impaired by additive SPD noise

components.

Learning frequencies is key for robustness to noise.

0.20 —
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Figure: RMSE on the test set, corrupted by various levels of noise
on the test set. 5'" and the 95" percentile is shown.
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Can Fourier features learn invariance?

@ Discriminative frequencies learned
on the “noiseless” training data
correspond to Fourier features that
are nearly normalised (i.e. they are
close to unit norm).

@ This means that the Fourier NN has
learned to be approximately
invariant based on training data,
indicating that Aerosol data
potentially has irrelevant SPD noise
components (“cloudy pixels”)

@ In practice, use both types of
features (characteristic + phase)
and let data speak for itself.

D.Sejdinovic (University of Oxford)

Approximate Kernel Embeddings
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Figure: Histograms for the distribution of
the modulus of Fourier features over each
frequency w for the Aerosol data (test set);
Green: Random Fourier Features (with the
kernel bandwidth optimised on training
data)

Bottom Blue: Learned Fourier features;
Left: Original test set; Right: Test set with
(additional) noise.
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Summary

@ Both contributions study distribution regression probems, where the responses
are available at the group level, and demonstrate how statistical modelling
can be brought to bear to address questions of uncertainty and invariance.

e Modelling uncertainty can be vital for predictive performance on noisy datasets
e Encoding invariance can make models more robust to irrelevant variation in
the data
@ Increasing confluence between statistical modelling and machine learning —
making use of the well engineered deep learning (black-box) infrastructure,
while carefully considering appropriate statistical models.
o Flexibility of the RKHS framework and kernel mean embeddings as a
common ground between deep learning and statistical inference.
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