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Feature maps
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:
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Feature maps and kernel trick

Kernel methods on a generic domain X allow constructing nonlinear methods
after mapping to a higher dimensional feature space:

ϕ : X → RD

Typically need only inner products ϕ(xi)
>ϕ(xj) are required and the

coordinates of the maps ϕ(xi) ∈ RD need not be computed explicitly - inner
product between features can be a simple function (kernel) of xi and xj .
For example, polynomial kernel k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
q on

Rp computes q-order features - never need to compute explicit feature
expansion of dimension D =

(
p+q
q

)
where this inner product is defined.

Formally, a (reproducing) kernel k is any function k : X × X → R for which
there exists a Hilbert space H and a map ϕ : X → H s.t.
k(x, x′) = 〈ϕ(x), ϕ(x′)〉H for all x, x′ ∈ X .
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])
Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X . A function k : X × X → R is called a reproducing kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
Thus H servers as a canonical feature space with feature map x 7→ k(·, x).

Equivalently, all evaluation functionals f 7→ f(x) are continuous (norm
convergence implies pointwise convergence).
Moore-Aronszajn Theorem: every positive semidefinite k : X × X → R is a
reproducing kernel and has a unique RKHS Hk.
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If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)
has an infinite-dimensional

H with elements h(x) =
∑n
i=1 αik(xi, x) and their limits which give completion

with respect to the inner product〈
n∑
i=1

αik(xi, ·),
m∑
j=1

βjk(yj , ·)

〉
=

n∑
i=1

m∑
j=1

αiβjk(xi, yj).
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk = k(x, y)
inner products readily available

• nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:
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MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff
P = Q (also metrizes weak*
[Sriperumbudur,2010]).

• Gaussian RBF exp(− 1
2σ2 ‖x− x′‖

2
2),

Matérn family, inverse multiquadrics.

Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text...
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Some uses of MMD

within-sample average similarity
–

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

two-sample tests and independence tests
(on graphs, text, audio...) [Gretton et al,

2009, Gretton et al, 2012]

model criticism and interpretability [Lloyd &

Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,

2018]

ABC summary statistics [Park, Jitkrittum &

DS, 2015; Mitrovic, DS & Teh, 2016]

summarising streaming data [Paige, DS &

Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;

Sutherland et al, 2017; Li et al, 2017]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′) + E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)− 2EX∼P,Y∼Qk(X,Y ).
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M̂MD2
k (P ,Q) =

1

nx(nx − 1)

∑
i 6=j

k(Xi, Xj)+
1

ny(ny − 1)

∑
i6=j

k(Y i, Y j)−
2

nxny

∑
i,j

k(Xi, Y j).
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Kernel dependence measures: HSIC
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Figure by Arthur Gretton

HSIC2(X,Y ;κ) = ‖µκ(PXY )− µκ(PXPY )‖2Hκ
Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

dependence witness is a smooth function in the
RKHS Hκ of functions on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework that generalises
Distance Correlation (dcor) of [Szekely et al, 2007]:
HSIC with Brownian motion kernels [DS et al, 2013]

Extends to multivariate interaction and joint
dependence measures [DS et al, 2013; Pfister et al,

2017]

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Potsdam, 25/05/2018 8 / 31



Distribution Regression

-0.856 0.562 1.39

Labels yi = f(Pi) but observe only {xji}
Ni
j=1 ∼ Pi.

The goal: build a predictive model ŷ? = f({xj?}N?j=1) for a new sample
{xj?}N?j=1 ∼ P?.
Represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Now can use the induced inner product structure on empirical measures to
build a regression model:

• Linear kernel on the RKHS: K (µ̂i, µ̂j) = 〈µ̂i, µ̂j〉Hk = 1
NiNj

∑
r,s k(xri , x

s
j)

• Gaussian kernel on the RKHS: K (µ̂i, µ̂j) = exp(−γ‖µ̂i − µ̂j‖2Hk )
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Distribution Regression

supervised learning where labels are available at the group, rather than at the
individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

• classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
• aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
• image labels based on a distribution of small patches [Szabo et al, 2016]
• “traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
• identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]
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Kernel methods at scale
Expressivity of kernel methods comes at a price of O(n2) or O(n3) in the
number of observations n (due to having to compute, store and often invert
the Gram matrix)
Problematic when we have a lot of observations (and this is exactly when we
want to use a rich expressive model with a high-dimensional hypothesis class!)
Scaling up kernel methods is a very active research area
[Sonnenburg et al, 2006; Rahimi & Recht, 2007; Le, Sarlos & Smola, 2013; Wilson et al, 2014; Dai

et al, 2014; Sriperumbudur & Szabo, 2015; Bach, 2015; Avron et al, 2017].
Main idea: study the RKHS and construct a (random) low-dimensional space
with similar inner product structure for a given data - then undo the kernel
trick(!?)

explicit basis functions
↓

implicit basis functions
↓

explicit random basis functions
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Random Fourier features: Inverse Kernel Trick
Bochner’s representation: Assume that k is a positive definite translation-invariant
kernel on Rp. Then k can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

= 2

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.
Sample m frequencies Ω = {ωj}mj=1 ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
2

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ξΩ(x), ξΩ(y)〉R2m ,

with an explicit set of features ξΩ : x 7→
√

2
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]>
.

The cost drops: O(n3)→ O(m2n+m3), O(n2)→ O(mn+m2). How fast
does m need to grow with n? Often sublinear and can be as low as log n
without sacrificing convergence rates [Bach, 2015; Rudi et al, 2017, Avron et al, 2017].

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Potsdam, 25/05/2018 12 / 31



This talk:

How to model uncertainty of kernel embeddings in distribution regression?
• A simple Bayesian model for kernel mean embeddings leads to shrinkage

estimators with better predictive performance in high noise regimes.

When measuring nonparametric distances between distributions, can we
disentangle the differences in the noise from the differences in the signal?

• Weighted distance between the empirical phase functions can lead to
distribution regression which is more robust to changes in measurement noise.
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Uncertainty in Bag Sizes

-0.856 0.562 1.39
Recall: we represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Empirical mean in infinite-dimensional space? Stein’s phenomenon?
Shrinkage estimators can be better behaved [Muandet et al, 2013]

These inputs (with or without shrinkage) are noisy - we do not observe the
true embedding µi. Moreover, bags with small Ni are noisier - can this
uncertainty be included in the predictive model?

Bayesian Approaches to Distribution Regression
Ho Chung Leon Law, Dougal Sutherland, DS, and Seth Flaxman
AISTATS 2018
http://proceedings.mlr.press/v84/law18a.html
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Uncertainty in Mean Embeddings

The empirical mean embedding is µ̂i = 1
Ni

∑Ni
j=1 k(·, xji ) ∈ Hk

Bayesian model for kernel mean embeddings [Flaxman,DS,Cunningham & Filippi, UAI

2016]:
• Place prior on the RKHS µi ∼ GP (m0(·), r(·, ·)) (requires care due to 0/1

laws [Kallianpur, 1970; Wahba, 1990; Steinwart, 2014+])
• Posit normal likelihood for the evaluations of the embedding at a set of points

u:
µ̂i(u)|µi(u) ∼ N (µi(u),Σi/Ni)

• Leads to a closed-form GP posterior µi|{xji}:

µi(z)|{xji} ∼ N
(
Rzu(Ruu + Σi/Ni)

−1(µ̂i −m0) +m0,

Rzz −Rzu(Ruu + Σi/Ni)
−1Ruz

)

• Recovers frequentist shrinkage estimator of mean embeddings [Muandet et al,

2013] (but with r instead of k), similar to James-Stein estimator.
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Distribution Regression Model
Model label as a function of the “true” kernel mean embedding:

yi = f(µi) + ε, µi = EX∼Pik(·, X)

Linear model on the evaluation of kernel mean embedding at a set of
“landmark points” z:

f(µi) = β>µi(z)

Can model uncertainty in β (BLR) or in µi (shrinkage) or in both (BDR,
which requires MCMC due to non-conjugacy).
Shrinkage: Integrate likelihood yi ∼ N (f(µi), σ

2) through the posterior
µi|{xji} to obtain

yi | {xji}, β ∼ N (ξβi , ν
β
i )

ξβi = β>Rzxi

(
Rxixi +

Σi
Ni

)
−1(µ̂i −m0) + β>m0

νβi = β>

(
Rzz −Rzxi

(
Rxixi +

Σi
Ni

)−1

R>xiz

)
β + σ2.

Can be optimized to find MAP of β, σ2, kernel parameters, locations of
landmark points, ...
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Age prediction from images

{
, ,

}
→

0 25 50 75
age

IMDb-Wiki database of images with age labels
• Very noisy labels in the dataset

Distribution regression: group pictures of actors, predict mean age
Image features: last hidden layer from a convolutional neural network by
[Rothe et al, IJCV 2016]

Lots of variation in Ni:
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Ni = 1: 23% of bags

Figure: Histogram of Ni.
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Age prediction from images
Propagating uncertainty using shrinkage helps!

Figure: Results across ten data splits (means and standard deviations). RBF net is tuned
for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of
[Rothe-IJCV-2016] for each point in the bag.
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Outline

1 Preliminaries on Kernel Methods

2 Bayesian Approaches to Distribution Regression

3 Learning on Distributions with Symmetric Noise Invariance
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The problem with test bags

supervised learning where labels are available at the group, rather than at the
individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

• aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
• identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]

Possible (distributional) covariate shift?
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Bag-specific noises in Distribution Regression

figures from Wang et al, 2012

Aerosol / Crop Yield prediction from multispectral data [Wang et al, 2012]:

The labels yi provided by the ground sensors (aerosol), government records
(crop yield)
“Multiple-instance regression”: randomly subsample multispectral (16-dim)
pixels (satellite imaging data) within 20km radius of ground sensor (aerosol)
/ within a county (crop yield)
Large image variability due to surface properties.
Arguably different noise distribution (“cloudy pixels”) in different images.
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All possible differences between generating processes?

differences between embeddings can be due to different types of
measurement noise or data collection artefacts

• With a large sample-size, uncovers potentially irrelevant sources of variability

Covariate shift in distribution regression?
• Each bag of observations could be impaired by a different measurement noise

process. Also, test bags could have different measurement noise than train
bags.

Both problems require learning a representation invariant to some form of a
noise model (here we will assume that the noise is symmetric and the signal
is asymmetric).

Testing and Learning on Distributions with Symmetric Noise Invariance
Ho Chung Leon Law, Chris Yau, and DS
NIPS 2017
https://arxiv.org/abs/1703.07596
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Random Fourier features: Inverse Kernel Trick

Bochner’s representation: Assume that k is a positive definite
translation-invariant kernel on Rp. Then k can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

= 2

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.

Sample m frequencies Ω = {ωj}mj=1 ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
2

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ξΩ(x), ξΩ(y)〉R2m ,

with an explicit set of features ξΩ : x 7→
√

2
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]>
.
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Characteristic Functions and (Approximate) Kernel Embeddings

Approximate mean embedding using random Fourier features [Rahimi & Recht, 2007] is
simply the evaluation (real and complex part stacked together) of the
characteristic function at the frequencies {ωj}mj=1 ∼ Λ:

Φ(P ) = EX∼P ξΩ(X)

=

√
2

m
EX∼P

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]>
If k is translation-invariant, MMD becomes the weighted L2-distance between the
characteristic functions of P and Q [Sriperumbudur, 2010].

‖µP − µQ‖2Hk =

ˆ
Rd
|ϕP (ω)− ϕQ (ω)|2 dΛ (ω) ,

Used for distribution regression [Sutherland et al, 2015] and for sketching / compressive
learning [Keriven et al, 2016].
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The Noise and the Signal

The key idea comes from nonparametric deconvolution of [Delaigle and Hall, 2016].

define a symmetric positive definite (SPD) noise component to be any
random vector E on Rd with a positive characteristic function,
ϕE(ω) = EX∼E

[
exp(iω>E)

]
> 0, ∀ω ∈ Rd (but E is not a.s. 0)

• symmetric about zero, i.e. E and −E have the same distribution
• if E has a density, it must be a positive definite function
• spherical zero-mean Gaussian distribution, as well as multivariate Laplace,

Cauchy or Student’s t (but not uniform).

define an (SPD-)decomposable random vector X if its characteristic function
can be written as ϕX = ϕX0

ϕE , with E SPD noise component.
Big modelling assumption: only the indecomposable components of
distributions are of interest.
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Phase Discrepancy and Phase Features
[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density f0 of X0 with observations Xi ∼ X0 + E. E has unknown
SPD distribution. Matching phase functions:

ρX (ω) =
ϕX (ω)

|ϕX (ω)|
= exp (iτX (ω))

Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y ) =

ˆ
Rd
|ρX (ω)− ρY (ω)|2 dΛ (ω)

for some spectral measure Λ.
Trivial to construct phase distribution embeddings by simply normalising standard
approximate mean embeddings to unit norm:

Ψ(PX) =

√
1

m

[
Eξω1

(X)

‖Eξω1
(X)‖

, . . . ,
Eξωm(X)

‖Eξωm(X)‖

]>
where ξωj (x) =

[
cos
(
ω>j x

)
, sin

(
ω>j x

)]
.
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Synthetic Example

θi
i.i.d.∼ Γ(α, β), Zi

i.i.d.∼ U [0, σ],

{Xj
i }j |θi, Zi

i.i.d.∼ Γ (θi/2, 1/2)√
2θi

+N (0, Zi),

Goal: Learn a mapping {Xj
i } 7→ θi

for Semi-Automatic ABC [Fearnhead

and Prangle, 2010; Mitrovic, DS, and Teh,

2016].
Figure: MSE of θ, using the Fourier and
phase neural network based SA-ABC
averaged over 100 runs. Here noise σ is
varied between 0 and 3.5, and the 5th and
the 95th percentile is shown.
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Learning Phase Features

Given a supervised signal, we can also
optimise a set of frequencies {wi}mi=1 that
will give us a useful discriminative
representation. In other words, we are no
longer focusing on a specific
translation-invariant kernel k (specific Λ),
but are learning Fourier/phase features.
A neural network with one hidden layer,
coupled cos/sin activation functions, mean
pooling and normalisation.
Straightforward implementation in
Tensorflow
(code: https://github.com/hcllaw/
Fourier-Phase-Neural-Network)
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Aerosol MISR1 Dataset [Wang et al, 2012] with Covariate Shift

figure from Wang et al, 2012

Aerosol Optical Depth
(AOD) multiple-instance
learning problem with 800
bags, each containing 100
randomly selected 16-dim
multispectral pixels
(satellite imaging) within
20km radius of AOD
sensor.

The test data is impaired by additive SPD noise
components.
Learning frequencies is key for robustness to noise.

Figure: RMSE on the test set, corrupted by various levels of noise
on the test set. 5th and the 95th percentile is shown.
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Can Fourier features learn invariance?

Discriminative frequencies learned
on the “noiseless” training data
correspond to Fourier features that
are nearly normalised (i.e. they are
close to unit norm).
This means that the Fourier NN has
learned to be approximately
invariant based on training data,
indicating that Aerosol data
potentially has irrelevant SPD noise
components (“cloudy pixels”)
In practice, use both types of
features (characteristic + phase)
and let data speak for itself.

Figure: Histograms for the distribution of
the modulus of Fourier features over each
frequency w for the Aerosol data (test set);
Green: Random Fourier Features (with the
kernel bandwidth optimised on training
data)
Bottom Blue: Learned Fourier features;
Left: Original test set; Right: Test set with
(additional) noise.
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Summary

Both contributions study distribution regression probems, where the responses
are available at the group level, and demonstrate how statistical modelling
can be brought to bear to address questions of uncertainty and invariance.

• Modelling uncertainty can be vital for predictive performance on noisy datasets
• Encoding invariance can make models more robust to irrelevant variation in

the data

Increasing confluence between statistical modelling and machine learning –
making use of the well engineered deep learning (black-box) infrastructure,
while carefully considering appropriate statistical models.
Flexibility of the RKHS framework and kernel mean embeddings as a
common ground between deep learning and statistical inference.
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