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Cell motility

Two principal forms of cell migration exist: mesenchymal and amoeboid.
Many cell types can switch between the two forms (plasticity)

Mesenchymal Amoeboid
prototype fibroblasts macrophages
cell shape elongated round

cell-matrix interaction proteolysis displacement/squeezing through

substrate attachment integrin based adhesion mostly unspecific

velocity ~10 um/h ~ 10 um/min

propulsion lamellipodia pseudopodia/blebs,
high myosin-Il dependent contractility

(adapted from Pankova et al., Cell. Mol. Life Sci. 2010, 67:63—71)

examples of amoeboid maotility

* immune system

« fast tumour cell invasion

« primordial germ cell migration

» motility of protozoan pathogens (Entamoeba histolytica)
« Model system: Dictyostelium discoideum



Dictyostelium discoideum

Relay of cAMP pulses by cells results in spreading of cAMP waves
through a population of starved cells. Cells aggregate due to directed
motion (chemotaxis) towards a cAMP source.
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Dictyostelium Chemotaxis:
Actin-Assembly at the Front and Myosin-ll Recruitment to the Tail

Green: Polymerized actin
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Main Questions:

How can we quantify spatio-temporal patterns in moving cells?
How can we relate these to movement?
Can we develop predictive mathematical models for cell movement?



Outline

Baniukiewicz P, Collier S,
Bretschneider T. QuimP — Analyzing
transmembrane signalling in highly

Analysing dynamic fluorescence distributions in deformable cells. Bioinformatics,
the cortex of moving cells (QuimP software) 34(15), 26957, 2018,

Parameterization of different models for cell Lockley R, Ladds G, Bretschneider T.
. . Image based validation of dynamical
reorientation models for cell reorientation.

Cytometry A, 87(6):471-80, 2015

The role of membrane tension in cellular blebbing
Zatulovskiy E, Tyson R,

Bretschneider T, Kay RR. Bleb-driven

; : : i chemotaxis of Dictyostelium cells.
3D .|Igh’[ sheet imaging Qf cell surface dynqmlcs 1G] B SO P, ST
during macro-pinocytosis & new computational Tyson RA. Zatulovskiy E, Kay RR.
tools Bretschneider T. How blebs and

pseudopods cooperate during
chemotaxis. PNAS 111(32):11703-8.
2014

Collier S, Paschke P, Kay RR,

Bretschneider T. Image based
- modelling of bleb site selection.

Scientific Reports, 7, 6692, 2017

Baniukiewicz P, Collier S, Bretschneider T.
Generative adversarial networks for
augmenting training data of microscopic
cell images. Submitted to ISBI 2019.




Outline

Parameterization of different models for cell
reorientation

The role of membrane tension in cellular blebbing

3D light sheet imaging of cell surface dynamics during
macro-pinocytosis & new computational tools



QuimP: ImagedJ plugins for quantifying cellular morphodynamics

BOA — Cell outline tracking
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Segmentation
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Linking outlines through time
ECMM — Region ANA — Intensity
Mapping sampling

Region tracking Fluorescence measurements

Dormann et al., Cell Motil. Cytoskeleton, 2002; Bosgraaf et al., ibid., 2009 go.warWICk.ac.ulquImp




Cell segmentation

Pixel based methods: Thresholding, clustering based, entropy based,
region growing/watershed/graph based/anisotropic

diffusion, ...
Contour based methods (active contours/level set methods, 1980s)
Convolutional Neural Networks/Deep learning (2010s)

QuimP‘s main/original segmentation method is based on active contours

International Journal of Computer Vision, 321-331 (1988)
© 1987 Kluwer Academic Publishers, Boston, Manufactured in The Netherlands

e Snakes: Active Contour Models

E,..: Resistance to
] . ICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS
stretchin ga nd bendi NE  hlumberger Palo Alto Research, 3340 Hillview Ave, Palo Alto, CA 94304

* 1
Eimage: Depends for E;knake - j Esnake(v(s)) ds
0

example on intensity
gradients

: Possible external

ECOI’\'
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| El¥6) + Eunae3(6)
constraints through

M | scrinteraction + E_.(v(s)) ds

8. Selected frames from a 2-second video sequence show-
snakes used for motion tracking. After being initialized to
the speaker’s lips in the first frame, the snakes automatically

> 9000 Citatio ns (SCO p US) track the lip movements with high accuracy.




Electrostatic Contour Mapping Method (ECMM)

T+1 Tyson, Epstein et al, Math. Model. Nat. Phenom., 2010

-ve Charge +ve Charge

ECMM provides a unique solution, which minimises
the total path integral, ie the energy needed to
match two cell outlines at subsequent time points

Field lines never cross!



Outline

Analysing dynamic fluorescence distributions in the

cortex of moving cells (QuimP software)

The role of membrane tension in cellular blebbing

3D light sheet imaging of cell surface dynamics
during macro-pinocytosis & new computational tools



Modelling cell reorientation:
Response of Dictyostelium to shear flow reversals
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Reaction-diffusion models for cell front activation

external signal s = (1 + dycos(2nz))

Meinhardt Levchenko/Iglesias Otsuiji
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Model Fitting

Experimental data: actin fluorescence sampled at P=20 points in the cell
cortex is taken as readout of the activator

1D PDE model on a closed circle (periodic boundary conditions)
Finite differences for approximating diffusion

0%C;/0x* ~ (Ci—1 — 2C; + Ci11)/(Ax)?
N-variable PDE problem is expressed as system of PxN ODEs
Standard ODE solvers (RK45) and NLLS methods for fitting can be used
Implementation in PottersWheel (MATLAB)

Diffusion between nodes
«—> = >
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A reduced two-variable Meinhardt model is fully identifiable

e | high shear low shear 1 flow to no-flow
,L:— g new front
.; ‘: 2 old front 2
100 0 100 200
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Black: 2-variable model
Grey: original three variable
model
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Identifiability: for each of the eleven parameters chi-squared, the quadratic error of
the fit, has a clear minimum; Dashed red lines: pointwise and simultaneous likelihood-
based confidence intervals {6 | x2(8) - x2(8") < Aa} with Aa = x2(a, df) , a = 68%



Reducing the Meinhardt model

Inhibitor B almost stays constant

replace it by B(P)=1 + B,(P? + 3,P) where P is the pressure in

Pascal

dy(P=0) = 0, and dy(P) = const
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Simulations of hallmark chemotaxis experiments

polarity inversion
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Predicting long time behaviour

Fitted Model Parameters

120 720 1320 1920
Time (s)

Fitted Model Parameters with Decreased D¢

120 720 1320 1920
Time (s)

signal present (1Pa)

Parameters derived
from previous
experiments result
in front splitting

Front splitting can be
abolished by reducing
D¢ (minus 35%), which
changes previous fits
only marginally



Fitting spontaneous movement of single cells
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Switching from a single front to multiple fronts (random motility)
entails shutting down inhibitor diffusion in the model

D (um?2s?t) 9.61 x 1072 Dp (um2s?t 9.95 x 1072 Dp(um?s?t) = A (um?s?) 5.20 x 1073
D¢ (um?s?) 2.13x10! Dc (um?s?) 2.20x 101 Dc(um?sl)  1.43x10! D¢ (um?s?) 3.31x10°8
b, 2.88 x 1071 b, 2.78 x 102 b, = b, 1.44 x 107
bc(s?) 2.02x 10 be(s?) 2.08 x 107! bc(s?) = b.(s?) 5.64 x 1072
ra(s?) 2.37 %107 ra(s?) 2.39x 10 ra(s?) = ra(s?) 9.47 x 1072
re(s?) 2.35x 107! r.(s?) 2.38x 107! re(s?) = r.(s?) 6.55 x 1072
S, 5.83x 1073 S, 5.65 x 1073 S, = s, 3.05x 1073
S 3.53x10 S, 3.40 x 107! Sc = Sc 2.79x 107!
o (s) [practically
non. ident.]
Bo (Pa2) 6.07 x 1073 Bo (Pa2) =
dyiow 1.31x 1072 1 (Pa) 1.84 B1(Pa) =
dYhigh 1.28 x 1072 dy 1.28 x 1072 dy =

Mechanotaxis (here): Diffusion of activator: 0.1 um?2sec?
Diffusion of phospholipids (Pip2/PIP3) in membrane (Ueda, bioRxiv, 2018): 0.2 pm?2sec!
Diffusion of cAMP receptor (Ueda et al., Science 2001): 0.02 pm2sec1



Conclusions Reorientation
Models by Meinhardt and Levchenko fit complex patterns observed in
reorientation experiments and spontaneous cell movements
A reduced 2-variable version of the Meinhardt model is fully identifiable.

Differences between cells producing one dominant or multiple competing
fronts can be explained by reduced activator and inhibitor diffusion.



Outline

« Analysing dynamic fluorescence distributions in the
cortex of moving cells (QuimP software)

« Parameterization of different models for cell
reorientation

« 3D light sheet imaging of cell surface dynamics during
macro-pinocytosis & new computational tools



with Evgeny Zatulovskiy, Rob Kay

Modelling mechanical aspects of cell motility
Migration under agarose induces blebbing in Dictyostelium

(MRC LMB, Cambridge)

cells
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F-actin marker: GFP-ABD (ABP-120)

Spinning disk microscopy (4.5-10 fps)
Confocal microscopy (2 fps)



Blebbing only mode (2% agarose), round cells

0.0 sec

p2.B




Actin / membrane association in protrusions vs blebs

distance (um) 6.5

9o o o o o o>
Actin
driven

protrusion
distance (um) 4
« Blebbing Myosin-II

bleb

Time (sec)

dependent.

* Myosin-ll-null cells
can migrate on a
2D surface, but not
under agar




Cellular blebbing

* Myosin-ll dependent, driven by hydrostatic pressure
* Often found in cells moving in 3D constrained environments
(zebrafish primordial germ cells, tumor cell migration)

How can cells direct blebs to the cell front? How do blebs and
actin based protrusions interact?

* Previously known regulators of bleb site selection: Weakening
of the acto-myosin cortex, local contraction of myosin-II,
asymmetric distribution of membrane-cortex linkers

* New: Cell geometry and membrane tension are important
factors in bleb site selection, too



Actin driven protrusions can localize blebs
through induction of negative curvature

Net Hydrostatic
Pressure

Convex

!
1@ Cortex tension @l

Membrane tension

Concave
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membrane/cortex
tension

F-actin can drive the formation
of blebs by inducing curvature
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Towards a predictive model for bleb initiation
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Actin cortex is
considered fixed

during blebbing. Membrane energy (modified Helfrich model)

1
Emembrane = % (Etension + Ebending + Ecoupling + Epressure) ds

1 d 2 d2x\*
Emembrane — % (%a (|d_;c i xo) + %ﬁ (d_;zc) + %k(l’ - LO)2 + Ap) ds

Linkers break above a certain length.



Predicting bleb sites

input

| cell contours as

using rea




Parameterising subcritical pressure (limit of pressure in the model at
which no blebs occur)

« Subcritical pressure correlates with cell shape

0.7% agarose: cells elongated; 2%: cells round

o 2% agar
o 0.7% agar
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Sub-critical pressure (Pa)




Defining a measure for blebbing propensity:

Initialize model with real cell contour (a,b)

Set pressure to sub-critical (highest pressure that does not result in linkers
breaking)

Use linker length at sub-critical pressure as a gauge for blebbing likelihood (c)

Determine local maxima, and order bleb sites according to their likelihood (d)



Frequency of experimentally observed blebs plotted against model bleb site rank

I 2% agar bleb dist. I 0.7% agar bleb dist.
I 2% agar test dist. | 0.7% agar test dist.
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 Distributions are strongly weighted towards the most likely ranked sites
predicted by the model

« Cumulative distribution function: under-curve areas of 82% (2% agarose) and
76% (0.7% agarose) show that the original model predicts bleb site selection in
a highly resistive environment better



Summary blebbing model

« Under high mechanical resistance (round cells, highly pressurised),
mechanical forces seem to play the dominant role

« Under low mechanical resistance (elongated cells) the model
supports the hypothesis that gradients in cortex-membrane linker
strength play an additional role (Talin in Dictyostelium)

« Because we deal with a physical system, the same principles can be
generalised to other cell types (fish)



Outline

Analysing dynamic fluorescence distributions in the
cortex of moving cells (QuimP software)

Parameterization of different models for cell
reorientation

The role of membrane tension in cellular blebbing



Actin driven surface dynamics during macropinocytosis: Cell drinking
joint project with Rob Kay, Peggy Paschke, MRC LMB, Cambridge

] Organisation of cup-like structures
Important in

Circular ruffle
Side view

* sampling of antigens by
immune cells

High levels of Ras

activity and intense Top view
accumulation of PIP3;

* meeting the high energy
demands of cancer cells KOY BN .\ e mambeane’ Dalch

Actin polymernsation

* the uptake of large viruses
like Ebola

Bloomfield G. and Kay R., 2016. J. Cell Sci. 129: : 2697-2705

Our interests
«  Macropinosome evolution

*  Mechanics of cup closure



Motivation for imaging in 3D

— Easy to misinterpret 2D data

AIM: to create a data pipeline for
processing and analysing 3D images B

Challenges for Dictyostelium data:
- Phototoxicity

- Speed /
$

Light sheet microscopy




3D single cell light sheet imaging offers ultra low phototoxicity

WIDEFIELD - low intensity
LSM - very high intensity

SDC - high intensity

O4pm 3um \ 4 .
v -~— LLS - very low intensity d ISPI IVI
A SPIM - low intensity
CELL
50um
excitation light sheet emission
sample

Number of objectives 2 1
Scan type Objectives moved by piezos Stage moved by piezos
Sheet thickness 4um at 50um length 0.4um at 50um length
Sample setup Standard 10ml culture plate 5mm coverslip
Minimum exposure 1ms 3ms
possible
Minimum z step size 0.2um 0.1pm
Maghnification 40X 62.5X
Maximum exposure for 10ms --
fusion deconvolution




Example data: F-actin label




Dual-colour rapid 3D imaging

F-actin and

maximum projection movies
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Mapping cortical fluorescence onto cell surfaces

Goal:
« Map the different stages of macropinosome evolution
« Correlate fluorescence with shape deformations and infer forces acting

on the membrane
I255

0

LifeAct-GFP




GENERATIVE ADVERSARIAL NETWORKS FOR AUGMENTING
TRAINING DATA OF MICROSCOPIC CELL IMAGES

 How can we validate methods for 3D segmentation if manual validation of 3D
training data is prohibitive?

ABD-GFP
™
A\ | T\
' y

CAR1-GFP

i ) \ "i B & M

Gish | -
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Original data, three different biological labels



Generating synthetic cell images trained from specific labels,
using arbitrary shapes

« The network reproduces the main characteristic features of different label
distributions, including noise.

1 2 3 4 5
Input mask ‘ , * * f‘
ABD-GFP
VS
Wgs” - ’ ry ’ ’ 'y -
CAR1-GFP

tala

)

- 4

P. Isola, J.-Y. Zhu, T. Zhou, and A.A. Efros, “Image-to-Image Translation with
Conditional Adversarial Networks,” in Proc. CVPR, 2017, pp. 1125-1134.



Generating synthetic cell images, using real cell shapes

« Validating how realistic the output is, is very difficult. So far biological experts
in the field seem to be impressed...

ABD-GFP

C y

CAR1-GFP
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GANs allow to produce more realistic augmented data

When scaling input shapes, synthetic labelling preserves the original length
scale (resolution) of features, and retains the inherent noise characteristics

ABD-GFP

100%
CAR1-GFP

100%
CAR1-GFP

100%

150%-bilinear

150%-bilinear

150%-bilinear

150%-network

150%-network

150%-network

-

200%-bilinear

200%-bilinear

200%-bilinear

200%-network

200%-network

»
’

200%-network




Synthetic 3D data

« Obtaining ground truth data for 3D data sets is almost impossible. Synthetic
data holds great promise for validating different methods, and augmenting
training data sets

JIR JiR Jid &

Art|f|C|a| |npUt maSk slice:1 slice:3 slice:5 slice:7 slice:9
r » ”» o* of
slice:11 slice:13 slice:15 slice:17 slice:19
- - -

° L
slice:21 slice:23 slice:25 slice:27 slice:29

»

slice:31 slice:33 slice:35 slice:37 slice:39
slice:41 slice:43 slice:45 slice:47 slice:49

slice:51 slice:53 slice:55 slice:57 slice:59




Segmentation of synthetic data with known ground truth




Summary 3D imaging & computational tools

Light sheet microscopy enables us to resolve fast cellular processes
in unprecedented detail

GANSs are a very promising tool for realistic data augmentation and
creating “synthetic ground truth data”
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