Piecewise-Deterministic MCMC

P. Vanetti, A. Bouchard-Cété, G. Deligiannidis & A. Doucet

Potsdam - 07/12/2018

Piecewise-Deterministic MCMC

o Consider a probability distribution on R? of density

_ (- U (x)
m () = S

where the potential U can be evaluated pointwise but
Z = [paexp(—U(x))dx cannot.

Piecewise-Deterministic MCMC

o Consider a probability distribution on R? of density

_ (- U (x)
m () = S

where the potential U can be evaluated pointwise but
Z = [paexp(—U(x))dx cannot.

o We are interested in computing expectations w.r.t. 7.

Piecewise-Deterministic MCMC

o Consider a probability distribution on R? of density

_ (- U (x)
m(x) = SR,

where the potential U can be evaluated pointwise but
Z = [paexp(—U(x))dx cannot.

o We are interested in computing expectations w.r.t. 7.

o MCMC are the tools of choice in statistics/physics/chemistry/CS.

Piecewise-Deterministic MCMC

o Bayesian inference for high-dimensional graphical models

7 (x) o exp Zw(X,,XJ Z‘P(Xiayi)

INJ

Piecewise-Deterministic MCMC

o Bayesian inference for high-dimensional graphical models

7 (x) o< exp Zw(X,,XJ Z‘P(Xiayi)

INJ

o Bayesian inference for big data

7 (<) o< p (9 [] p (1)

Piecewise-Deterministic MCMC

o Bayesian inference for high-dimensional graphical models

m(x) ocexp{ = > W (xi,) — > p(xi,yi)

INJ

o Bayesian inference for big data
m(x) o< p () [T P (ilx)
i=1

o Bayesian inference for intractable likelihood

700 o exp ([U () (e

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

o Provide state-of-the-art performance for a wide range of large scale
physical models.

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

o Provide state-of-the-art performance for a wide range of large scale
physical models.

o Exhibit some appealing features:

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

o Provide state-of-the-art performance for a wide range of large scale
physical models.

o Exhibit some appealing features:

o Local updates in graphical models without blocking (Peters & De
With 2012, Bouchard-Cété et al. 2015).

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

o Provide state-of-the-art performance for a wide range of large scale
physical models.

o Exhibit some appealing features:

o Local updates in graphical models without blocking (Peters & De
With 2012, Bouchard-Cété et al. 2015).

o Exactness under subsampling (Bierkens et al. 2016, Bouchard-Cété
et al. 2016; Kapfer & Krauth, 2016).

Piecewise-Deterministic MCMC

Piecewise-deterministic MCMC

@ Non-reversible MCMC schemes based on piecewise-deterministic
Markov processes have emerged recently.

o First appeared in physics (Peters & De With, 2012; Krauth et al.,
2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

o Provide state-of-the-art performance for a wide range of large scale
physical models.

o Exhibit some appealing features:

o Local updates in graphical models without blocking (Peters & De
With 2012, Bouchard-Cété et al. 2015).

o Exactness under subsampling (Bierkens et al. 2016, Bouchard-Cété
et al. 2016; Kapfer & Krauth, 2016).

o Ability to deal with intractable potential U (x) = [U, (x) u (dw)
(Pakman et al. 2016).

Piecewise-Deterministic MCMC

o All MCMC schemes presented here target an extended distribution
on Z =R x RY

p(2) =m(x) ¥ (v) = exp(=H (2))

where z = (x, v) is the extended state and 1 (v) is the multivariate
standard normal.

Piecewise-Deterministic MCMC

o All MCMC schemes presented here target an extended distribution
on Z =R x RY

p(2) =m(x) ¥ (v) = exp(=H (2))

where z = (x, v) is the extended state and 1 (v) is the multivariate
standard normal.

@ Think of v as velocity or momentum variables allowing us to define
a deterministic dynamics on RY.

Piecewise-Deterministic MCMC

o All MCMC schemes presented here target an extended distribution
on Z =R x RY

p(2) =m(x) ¥ (v) = exp(=H (2))

where z = (x, v) is the extended state and 1 (v) is the multivariate
standard normal.

@ Think of v as velocity or momentum variables allowing us to define
a deterministic dynamics on RY.

o Sampling from p provides samples from .

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Deterministic dynamics: An ordinary differential of drift ¢

dz;
E - ¢(zt)7

inducing a flow
Zy = d)t (zo) .

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Deterministic dynamics: An ordinary differential of drift ¢

dz

d_tt = ¢ (zt))
inducing a flow

zt - d)t (Z()) .

o Event rate X : Z — R™, with X (z;) e + o(€) being the probability of
having an event in the time interval [t t + €].

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Deterministic dynamics: An ordinary differential of drift ¢

dz

d_tt = ¢ (Zt))
inducing a flow

Zy = d)t (ZO) .

o Event rate A : Z — R™T, with \(z) €+ o () being the probability of
having an event in the time interval [t t + €].

o Markov kernel Q where the state at event time t is given by
ze ~ Q(z4-,), z— being the state of the process just before the
event.

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Initialize zy arbitrarily on Z and set t5 + 0.

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Initialize zy arbitrarily on Z and set t5 + 0.

o For k=1,2,...do

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Initialize zy arbitrarily on Z and set t5 + 0.

o For k=1,2,...do

o Sample inter-event time 7, where 7 is a non-negative random
variable such that

P(r > t) = exp [— /;OA{%(ztk_l)} ar| .

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Initialize zy arbitrarily on Z and set t5 + 0.

o For k=1,2,...do

o Sample inter-event time 7, where 7 is a non-negative random
variable such that

P(r > t) = exp [— /;OA{%(ztk_l)} ar| .

o For r € (0,7%), set
Zy_gir & Pr(ze_y)

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Initialize zy arbitrarily on Z and set t5 + 0.

o For k=1,2,...do

o Sample inter-event time 7, where 7 is a non-negative random
variable such that

P(r > t) = exp [— /;0)\{¢,(ztk_1)} ar| .

o For r € (0,7%), set
Zy_gir & Pr(ze_y)

o Set ty < tk—1 + 7« and sample

zy, ~ Q(ztk_ ,)-

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Requires being able to compute exactly the flow z; = &, (z).

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Requires being able to compute exactly the flow z; = &, (z).
o All existing algorithms use ¢ (z) = (v,04) so that
®; (20) = (x0 + vot, vo), except Hamiltonian BPS (Vanetti et al.,
2017).

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Requires being able to compute exactly the flow z; = &, (z).

o All existing algorithms use ¢ (z) = (v,04) so that
®; (20) = (x0 + vot, vo), except Hamiltonian BPS (Vanetti et al.,
2017).

o Requires being able to simulate the event times.

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Requires being able to compute exactly the flow z; = &, (z).

o All existing algorithms use ¢ (z) = (v,04) so that
®; (20) = (x0 + vot, vo), except Hamiltonian BPS (Vanetti et al.,
2017).

o Requires being able to simulate the event times.
o Inversion, thinning, superposition (Devroye, 1986).

Piecewise-Deterministic MCMC

Simulation of a PDMP

o Requires being able to compute exactly the flow z; = &, (z).

o All existing algorithms use ¢ (z) = (v,04) so that
®; (20) = (x0 + vot, vo), except Hamiltonian BPS (Vanetti et al.,
2017).

o Requires being able to simulate the event times.
o Inversion, thinning, superposition (Devroye, 1986).
o Requires being able to simulate from Q.

Piecewise-Deterministic MCMC

PDMP for Sampling

@ The generator of a PDMP is given by
£F (2) = tim 2 () 12 =2 = (2)

e—0 €

=(0(2),VFf(2)) +A(2) / [f (') = F(2)] Q(z,dZ).

PDMP for Sampling

@ The generator of a PDMP is given by
£F (2) = tim 2 () 12 =2 = (2)

e—0 €

=(0(2),VFf(2)) +A(2) / [f (') = F(2)] Q(z,dZ).

o For p-invariance, we need

/ p(dz) LF (2) = 0.

PDMP for Sampling

@ The generator of a PDMP is given by
£F (2) = tim 2 () 12 =2 = (2)

e—0 €

=(0(2),VFf(2)) +A(2) / [f (') = F(2)] Q(z,dZ).

o For p-invariance, we need

/ p(dz) LF (2) = 0.

o Sufficient conditions

PDMP for Sampling

@ The generator of a PDMP is given by
£F (2) = lim EAT (Zerd) |20 = 2 7 F(2)

=(0(2),VFf(2)) +A(2) / [f (') = F(2)] Q(z,dZ).

o For p-invariance, we need

JUGECE

o Sufficient conditions
o C1 - The event rate)\ satisfies

A(S(2)) wa: (2) = (VH(2),9(2))-

PDMP for Sampling

@ The generator of a PDMP is given by
£F (2) = lim EAT (Zerd) |20 = 2 7 F(2)

=(0(2),VFf(2)) +A(2) / [f (') = F(2)] Q(z,dZ).

o For p-invariance, we need

JUGECE

o Sufficient conditions
o C1 - The event rate)\ satisfies

A(S(2)) wa: (2) = (VH(2),9(2))-

o C2 - For the flip operator S(z) = (x, —v), Q satisfies

/ p(d2)A(2) Q (2, d2) = p (S (d2)) A (S ().

Bouncy Particle Sampler (Peters & De With, 2012)

e ¢(z) =(v,04): linear dynamics.

Bouncy Particle Sampler (Peters & De With, 2012)

e ¢(z) =(v,04): linear dynamics.

0 A(2) = Aret + (VU (x), v), where [a], := max(0, a).

Bouncy Particle Sampler (Peters & De With, 2012)

e ¢(z) =(v,04): linear dynamics.
0 A(z) = Aret + (VU (x), v), where [a], := max(0, a).

o The kernel Q satisfies

Q(z,d7) = AA(;) 5X(dx')¢(dv')+%de')a%u(x)v(dv’),
where
Ryu(x)v:i=v— ZWVU(X)

corresponds to a reflection on the hyperplane tangential to VU.

Bouncy Particle Sampler Path

Contour plot of the energy, U(x) = - log r(x)

Refreshmen
Second event
bounce

Energy

Bouncy Particle Sampler Path in High Dimensions

Xy and v 4 versus Hamiltonian contours, d=100, b=4

In high-dimensions, BPS converges towards randomized HMC
(Deligiannidis et al., 2018).

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Graphical models: U (x) = Y"1, Ui(x) where U;(x) = Ui(xs,)
depends only subset xs, of components of x = (xq, ..., X4).

Local Bouncy Particle Sampler: Graphical Models

o Graphical models: U (x) = Y"1, Ui(x) where U;(x) = Ui(xs,)
depends only subset xs, of components of x = (xq, ..., X4).

o Gibbs sampling samples iterately from 7 (xs,|x_s;,): blocking.

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Graphical models: U (x) = Y"1, Ui(x) where U;(x) = Ui(xs,)
depends only subset xs, of components of x = (xq, ..., X4).

o Gibbs sampling samples iterately from 7 (xs,|x_s;,): blocking.

o Local BPS uses

n

Az) = 3o M) = D (VU v,

i=1

Ai

Qz.02') = 3 (5] 3:(e o).

Local Bouncy Particle Sampler: Graphical Models

o Graphical models: U (x) = Y"1, Ui(x) where U;(x) = Ui(xs,)
depends only subset xs, of components of x = (xq, ..., X4).

o Gibbs sampling samples iterately from 7 (xs,|x_s;,): blocking.

o Local BPS uses

n

Az) = 3o M) = D (VU v,

i=1

i((j)) 8(0'YSRey (o (V).

Q(z,d) = Z
i—1

o Superposition implementation: sample arrival times of PP for
factor i of intensity \;(z) and apply v/ + Ry, (x)v.

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Graphical models: U (x) = Y"1, Ui(x) where U;(x) = Ui(xs,)
depends only subset xs, of components of x = (xq, ..., X4).

o Gibbs sampling samples iterately from 7 (xs,|x_s;,): blocking.
o Local BPS uses
n n
Mz) =Y Xi(2) =D (VU(x),v),
i=1 i=1

Qz.02') = 3 (5] 3:(e o).

o Superposition implementation: sample arrival times of PP for
factor i of intensity \;(z) and apply v/ + Ry, (x)v.

o Reflection Ry, only requires updating components xs, and
recomputing arrival times for factors {j : x5, N xs; # O}.

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:
o Sample first arrival time of a PP of intensity A = >_7_, \; with

)\; Z)\,‘(Z).

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:
o Sample first arrival time of a PP of intensity A = >_7_, \; with

)\; Z)\,‘(Z).

o Sample I € [n] with proba \;/).

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:

o Sample first arrival time of a PP of intensity X= > i with
)\,’ Z)\,‘(Z).

o Sample I € [n] with proba \;/).

o With proba A/(z)/X\

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:
o Sample first arrival time of a PP of intensity A = >_7_, \; with

)\,’ Z)\,‘(Z).
o Sample I € [n] with proba \;/).

o With proba A/(z)/X\
o Reflection Ry, only requires updating components xs, and
recomputing arrival times for factors {j : x5, N xs; # O}

Piecewise-Deterministic MCMC

Local Bouncy Particle Sampler: Graphical Models

o Thinning implementation:
o Sample first arrival time of a PP of intensity A = >_7_, \; with

)\,’ Z)\,’(Z).
o Sample I € [n] with proba \;/).

o With proba A/(z)/X\
o Reflection Ry, only requires updating components xs, and
recomputing arrival times for factors {j : x5, N xs; # D},
o Efficient implementation via alias method (Bouchard-Cété et al.
2016; Kapfer & Krauth, 2016).

Piecewise-Deterministic MCMC

Experimental Results on Poisson-Gaussian Random Fields

10 100 1000
~
< method
]
3 — BPS
So10- — Stan
<
=
)
c
]
)
2
8
& 0.01-

1 1 1 [1 1 1 [1 1 1 I
25 50 75 1000 25 50 75 1000 25 50 75 100
Percent of samples processed

o -

Relative error for BPS vs HMC for d = 10 (left), d = 100 (middle) and
d = 1000 (right) at fixed computational budget

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Continuous-time PDMP are useful but have severe limitations.

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Continuous-time PDMP are useful but have severe limitations.

o Technical machinery non-standard to most MCMC practitioners.

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Continuous-time PDMP are useful but have severe limitations.
o Technical machinery non-standard to most MCMC practitioners.

o Is it possible to derive more flexible discrete-time schemes?

Piecewise-Deterministic MCMC

Continuous-time PDMP

o Continuous-time PDMP are useful but have severe limitations.

Technical machinery non-standard to most MCMC practitioners.

Is it possible to derive more flexible discrete-time schemes?

Is it possible to obtain discrete-time schemes enjoying similar
features as continuous-time schemes?

Piecewise-Deterministic MCMC

Discrete-time PDMP

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z and define
®0(z) =z and &1 (z) = ¢ " 0 ®(z) for r € N.

Piecewise-Deterministic MCMC

Discrete-time PDMP

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z and define
®0(z) =z and &1 (z) = ¢ " 0 ®(z) for r € N.

o Acceptance probability o : Z — [0, 1] with 1 — «(z) being the proba
of having an event at the next time step when the current state is z.

Piecewise-Deterministic MCMC

Discrete-time PDMP

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z and define
®0(z) =z and 1 (z) = "o ®(z) for r € N.

o Acceptance probability o : Z — [0, 1] with 1 — «(z) being the proba
of having an event at the next time step when the current state is z.

o Markov kernel @ used to sample state at event time t is given is
given by z; ~ Q (z:—1,-).

Piecewise-Deterministic MCMC

Discrete-time PDMP

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z and define
®0(z) =z and 1 (z) = "o ®(z) for r € N.

o Acceptance probability o : Z — [0, 1] with 1 — «(z) being the proba
of having an event at the next time step when the current state is z.

o Markov kernel @ used to sample state at event time t is given is
given by z; ~ Q (z:—1,-).

o (®,a, Q) defines a Markov transition kernel

K(z,dz") = a(2) 0oz (dz') + (1 — a(2)) Q(z,dZ).

Piecewise-Deterministic MCMC

Simulation of a discrete-time PDMP

o Initialize zp arbitrarily on Z and set t; + 0.

Piecewise-Deterministic MCMC

Simulation of a discrete-time PDMP

o Initialize zp arbitrarily on Z and set t; + 0.

o For k=1,2,...do

Piecewise-Deterministic MCMC

Simulation of a discrete-time PDMP

o Initialize zp arbitrarily on Z and set t; + 0.

o For k=1,2,...do

o Sample inter-event time 7%, where 7 is a non-negative integer-valued
random variable such that

Piecewise-Deterministic MCMC

Simulation of a discrete-time PDMP

o Initialize zp arbitrarily on Z and set t; + 0.

o For k=1,2,...do

o Sample inter-event time 7%, where 7 is a non-negative integer-valued
random variable such that

Pl =) = {1 a (@ (20) Lo (¢ ().
o If 7x > 1 then for r € {1, ..., 7¢}, set

Zy_qyrr < (24 ,)-

Piecewise-Deterministic MCMC

Simulation of a discrete-time PDMP

o Initialize zp arbitrarily on Z and set t; + 0.

o For k=1,2,...do

o Sample inter-event time 7%, where 7 is a non-negative integer-valued
random variable such that

Plre=i) = {1-0 (¢ (2 1))} [T (¢ ().

=

o If 7x > 1 then for r € {1, ..., 7¢}, set
Zt_q+r < ¢r(sz—1)'
o Set ty < tk—1 + 7« + 1 and sample

Zy ~ Q(ztk—17)

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o We want

/p(dz) K (z,dz") = p(dZ').

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o We want

/p(dz) K (z,dz') = p(dZ’).

@ C1 - The acceptance probability o satisfies

{—loga(So®(z))}—{~loga(z)} = log [V (2)|-{H (¢ (2)) - H(2)}-

Sufficient conditions for invariance

o We want

/p(dz) K (z,dz") = p(dZ').
@ C1 - The acceptance probability o satisfies

{~loga(S o ®(2))}~{~ loga(z)} = log [V® (2)|—{H (& (2)) - H(2)}.
@ C2 -The kernel Q satisfies

/p (dz) (1 = o (2)) Q(z,d2) = p(S(d2')) (1 — (5 () -

Generalized MH

o Consider the target distribution v (dz) < p (dz) (1 — a(2)) and
proposal M (z, dz’).

Piecewise-Deterministic MCMC

Generalized MH

o Consider the target distribution v (dz) < p (dz) (1 — a(2)) and
proposal M (z, dz’).
o Let Q be defined as
Q(z,dZ') = B(z,Z)M (z,dz") {1—/[3(2 w) M (z, dw)}ég(z (dz)

where

v(S(dz))M(5(),S (dZ))>

,3(27 Z’) = min (1, V(dZ) /\/,(z7 dZ’)

Generalized MH

o Consider the target distribution v (dz) < p (dz) (1 — a(2)) and
proposal M (z, dz’).
o Let Q be defined as

Q(z,dz') = B(z,2') M (z, dz") {1_/5(2 w) M (z, dw)}és(z (d2)

where

v(S(dz))M(5(),S (dZ))>

B(z,7) = min (1’ v (dz) M (z,dz’)
o This satisfes the skewed detailed balance
v(dz) Q(z,dz') = v (S (dz)) Q(S (), S (dz))

thus condition C2.

Generalized MH

o Consider the target distribution v (dz) < p (dz) (1 — a(2)) and
proposal M (z, dz’).
o Let Q be defined as

Q(z,dz') = B(z,2') M (z, dz") {1_/5(2 w) M (z, dw)}és(z (d2)

where

32.2) = min (1, LS UD M). 5)

v(dz) M (z,dz")
o This satisfes the skewed detailed balance

v(dz) Q(z,dZ') = v (S (dZ)) Q(S ('), S (dz))

thus condition C2.
o For M (z,dz") = dy(;) (dz’), this kernel is well-defined if W admits an

inverse V"1 =SoWoS§ and f(z,2') = 3(z) = min (1 M)

(dz)

Existing PD-MCMC algorithms and Extensions

o Guided random walk (Gustfason 1998): ® (z) = (x + ev, v),

a(z)=min{l,p(®(2)) /p(2)} = min {1, 7 (x + ve) /7 (x)},
Q(z,dz") = b5z (dZ').

Existing PD-MCMC algorithms and Extensions

o Guided random walk (Gustfason 1998): ® (z) = (x + ev, v),
a(z) =min{l,p(®(2)) /p(2)} = min {1, 7 (x + ve) /m (x)},
Q(z,dz") = b5z (dZ').

o Hamiltonian Monte Carlo (Duane et al. 1987): ®(z) leapfrog
integrator, o (z) = min{1,p(®(2)) /p(2)}, Q(z,dz") = bs(z) (dZ').

Existing PD-MCMC algorithms and Extensions

o Guided random walk (Gustfason 1998): ® (z) = (x + ev, v),
a(z) =min{l,p(®(2)) /p(2)} = min {1, 7 (x + ve) /m (x)},
Q(z,dz") = b5z (dZ').

o Hamiltonian Monte Carlo (Duane et al. 1987): ®(z) leapfrog
integrator, o (z) = min{1,p(®(2)) /p(2)}, Q(z,dz") = bs(z) (dZ').
o Reflective Slice Sampling (Neal 2003): ¢ (z) = (x + €v,v) and

Q(Z7 dzl) = ()5(X Reu(x)v) (dZ) + {1 — B(z)} 55(2) (dz)

where

3(z) = min {17 [7 (x) — 7(x — Ry u(x)v))]+ } |

[(x) — 7(x + ev)]

As ¢ — 0, we have 5 (z) — 1 and the algorithm converges to BPS.

Existing PD-MCMC algorithms and Extensions

o Guided random walk (Gustfason 1998): ® (z) = (x + ev, v),
a(z) =min{l,p(®(2)) /p(2)} = min {1, 7 (x + ve) /m (x)},
Q(z,dz") = b5z (dZ').

o Hamiltonian Monte Carlo (Duane et al. 1987): ®(z) leapfrog
integrator, o (z) = min{1,p(®(2)) /p(2)}, Q(z,dz") = bs(z) (dZ').
o Reflective Slice Sampling (Neal 2003): ¢ (z) = (x + €v,v) and
Q(z,dz') = B(2) 0(x.Ryu(x)v) (d2') + {1 = B(2)} 0s(z) (d2)

where

x) = m(x = eRvu(x)v))]+ } .

[(x) — 7(x + ev)]

ﬁ(z):min{l, [(

As ¢ — 0, we have 5 (z) — 1 and the algorithm converges to BPS.

o Randomized bounces & gradient-free algorithms can be derived
(Sherlock & Thiery, 2017, Vanetti et al., 2017).

Implementation

o Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter 1 — « (z) when in state z.

Piecewise-Deterministic MCMC

Implementation

o Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter 1 — « (z) when in state z.

o Exact sampling of event time for convex U is feasible.

Piecewise-Deterministic MCMC

Implementation

o Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter 1 — « (z) when in state z.

o Exact sampling of event time for convex U is feasible.

o Equivalent of thinning and superpositions for Poisson processes can
be used:

Piecewise-Deterministic MCMC

Implementation

o Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter 1 — « (z) when in state z.

o Exact sampling of event time for convex U is feasible.

o Equivalent of thinning and superpositions for Poisson processes can
be used:
o “Thinning™ f 3a: 2 — (0,1] s.t. o (®*(2)) > a(z, k) > a(2)
then sample a candidate event time from
P(r=j)={1—-a(z)}& ! and accept/reject.

Piecewise-Deterministic MCMC

Implementation

o Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter 1 — « (z) when in state z.

o Exact sampling of event time for convex U is feasible.

o Equivalent of thinning and superpositions for Poisson processes can
be used:
o “Thinning™ f 3a: 2 — (0,1] s.t. o (®*(2)) > a(z, k) > a(2)
then sample a candidate event time from
P(r=j)={1—-a(z)}& ! and accept/reject.

o “Superposition then thinning”: If a(z) = min{1, p(®(2)) /p(2)} for
p(2) = [1L_, pi (2) then
&(z, k) = [y min {1, pi (®*** (2)) /pi (®* (2)) } is a lower bound.

Piecewise-Deterministic MCMC

Discrete-time local PDMP

o Motivation: exploit H(z) = >, Hi(z), where H;(z) might only
depend on a subset of components of z.

Piecewise-Deterministic MCMC

Discrete-time local PDMP

o Motivation: exploit H(z) = >, Hi(z), where H;(z) might only
depend on a subset of components of z.
o Deterministic dynamics: a diffeomorphism ¢ : Z — Z.

Piecewise-Deterministic MCMC

Discrete-time local PDMP

o Motivation: exploit H(z) = >, Hi(z), where H;(z) might only
depend on a subset of components of z.

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z.

o Acceptance probability o : Z — [0, 1] where

a(z) = Ha; (2)

with «; : Z — [0, 1] and define B; nd Ber(1 — «;(z)). For
B:=(Bi,...By)and |B| =31, B, P(|B| > 1) =1—a(z2).

Piecewise-Deterministic MCMC

Discrete-time local PDMP

o Motivation: exploit H(z) = >, Hi(z), where H;(z) might only
depend on a subset of components of z.

o Deterministic dynamics: a diffeomorphism ¢ : Z — Z.

o Acceptance probability o : Z — [0, 1] where

a(z) = Ha; (2)

with a; : Z — [0, 1] and define B; nd Ber(1 — «;(z)). For

B:=(Bi,...By)and |B| =31, B, P(|B| > 1) =1—a(z2).
o Markov kernel. conditional upon B, where |B| > 1, sample

Z' ~ Qg (Z,-) so

Q(z,dz') =Y P(B = b|z,|B| > 1)Qs(z,d7'),
beB
where

P(B = bz, |B| > 1) = [Ty B;’rfb; ; @i(2))y <Z bi > 1> .
i=1

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — «a(z)}.

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — «a(z)}.

o If |B| =0 then set z/ «+ ®(z).

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — «a(z)}.

o If |B| =0 then set z/ «+ ®(z).

o If |B| > 1 then sample z’ ~ Qg (z,-).

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — «a(z)}.

o If |B| =0 then set z/ «+ ®(z).

o If |B| > 1 then sample z’ ~ Qg (z,-).
o Sampling using Bernoulli processes

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — ai(z)}.

o If |B| =0 then set z/ «+ ®(z).

o If |B| > 1 then sample z’ ~ Qg (z,-).
o Sampling using Bernoulli processes
o For i € [n], sample 7; s.t.

P(ri = j) = {1 = i (¥ (244)) FEZ @ (¥ (764))-

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — ai(z)}.

o If |B| =0 then set z/ «+ ®(z).
o If |B| > 1 then sample z’ ~ Qg (z,-).

o Sampling using Bernoulli processes
o For i € [n], sample 7; s.t.

P(ri = j) = {1 = i (¥ (244)) FEZ @ (¥ (764))-

o If 7:=min7; > 1 then set z;,_,4r < (2, ,) for r € {1,...,7}.

Piecewise-Deterministic MCMC

Sampling a discrete-time local PDMP

o Sampling using Bernoulli trials
o For i € [n], sample B; ~ Ber {1 — ai(z)}.

o If |B| =0 then set z/ «+ ®(z).
o If |B| > 1 then sample z’ ~ Qg (z,-).

o Sampling using Bernoulli processes
o For i € [n], sample 7; s.t.

P(ri =) = {1 = ar (¥ (2-4)) } TEZg @i (@' (70-4)).
o If 7:=min7; > 1 then set z;,_,4r < (2, ,) for r € {1,...,7}.

o Set ty + ti—1 + 7+ 1 and sample z;, ~ Qp(z¢—1,)-

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

@ C1 - For mappings such that |V®| = 1, the acceptance probabilities
«; satisfy for all i € [n]

{—loga;(§0®(2))} — {—logai(2)} = —{H:i (®(2)) — Hi(2)}.

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

@ C1 - For mappings such that |V®| = 1, the acceptance probabilities
«; satisfy for all i € [n]

{—log i (So®(z))} —{—logai(z)} = — {H;(®(2)) — Hi(2)} .

o C2 - For all b € B, the transition kernel Qp satisfies

[p(dz)(1—a(2))P(B = blz,[B| = 1)Qs (2, dz')
= p(8(d)) (1 —a(5(2)))P(B = bS(2),[B] > 1).

Sufficient conditions for invariance

@ C1 - For mappings such that |V®| = 1, the acceptance probabilities
«; satisfy for all i € [n]

{—logaj(So®(2))} — {—logai(z)} = — {H; (®(2)) — Hi (2)}.
o C2 - For all b € B, the transition kernel Qp satisfies

[p(dz)(1—a(2))P(B = blz,[B| = 1)Qs (2, dz')
= p(8(d)) (1 —a(5(2)))P(B = bS(2),[B] > 1).

o Condition C2 is satisfied if Q) satisfies a skewed detailed balance
wort. p(dz) (1 - o (2)) Qg1 (ble).

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

o Consider U (x) = "7, Ui(x) and no refreshment for simplicity.

Piecewise-Deterministic MCMC

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

o Consider U (x) = "7, Ui(x) and no refreshment for simplicity.

o Set Hi(z) = Ui(x) for i € [n] and Hn11(z) = 3viv

Piecewise-Deterministic MCMC

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

o Consider U (x) = "7, Ui(x) and no refreshment for simplicity.
o Set Hi(z) = Ui(x) for i € [n] and Hn11(z) = 3viv

o Set a; (z) = min {1, m;(x + ve)/mi(x)} for mi(x) o< exp(—Ui(x)).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

o Consider U (x) = "7, Ui(x) and no refreshment for simplicity.
o Set Hi(z) = Ui(x) for i € [n] and Hn11(z) = 3viv
o Set a; (z) = min {1, m;(x + ve)/mi(x)} for mi(x) o< exp(—Ui(x)).

o For all b € B, Qp uses deterministic reflection w.r.t.

=Y VU(x).

i:bi=1

Piecewise-Deterministic MCMC

Discrete-time local BPS

o Discrete-time version of local BPS using ® (z) = (x + ev, v) (Peters
& De With, 2012; Bouchard-Cété et al., 2015).

o Consider U (x) = "7, Ui(x) and no refreshment for simplicity.
o Set Hi(z) = Ui(x) for i € [n] and Hn11(z) = 3viv
o Set a; (z) = min {1, m;(x + ve)/mi(x)} for mi(x) o< exp(—Ui(x)).

o For all b € B, Qp uses deterministic reflection w.r.t.

=Y VU(x).

i:bi=1

@ Same idea provides a discrete-time version of multidimensional
Zig-Zag (Bierkens et al. 2016).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ev)], /m; (x)}.

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ev)], /m; (x)}.

o If |B| =0 then set z’ < (x +ev, v).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ev)], /m; (x)}.
o If |B| =0 then set z’ < (x +ev, v).

o If |B| >0, then

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ev)], /m; (x)}.
o If |B| =0 then set z’ < (x +ev, v).

o If |B| >0, then
o Compute

VU(x):= > VU(x)

i:Bj=1

and set z* = (x, v*) where v* = Ryy(x)v .

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ev)], /m; (x)}.
o If |B] =0 then set z’ + (x + ev,v).

o If |[B] >0, then
o Compute

VU(x):= Y VUi(x)

i:Bj=1

and set z* = (x, v*) where v* = Ryy(x)v .
o With proba

IT min {1, min (i (x), mi(x — eV*))}

i:B;=0 min (7;(x), mi(x + ev))

[T min {3, GO

i:B;
i

output z' = (x, v*), otherwise output z' = (x, v*).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.

o If |B| =0 then set z’ + (x + ve, v).

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.
o If |B| =0 then set z’ + (x + ve, v).

o If |B| >0, then

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.
o If |B| =0 then set z’ + (x + ve, v).

o If |B| >0, then
o Compute

VU(x):= > VU(x)

i:Bj=1

and set z* = (x, v") where v* = Rgy(x)v .

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.
o If |B| =0 then set z’ + (x + ve, v).

o If |B| >0, then
o Compute

VU(x):= > VU(x)

i:Bj=1

and set z* = (x, v") where v* = Rgy(x)v .

N _ [() —mi(x—v*)]
o For i € V, sample B/ ~ Ber (1 min {1 e m(x+v€)]*)

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.
o If |B| =0 then set z’ + (x + ve, v).
o If |B| >0, then

o Compute

VU(x):= > VU(x)

i:Bj=1
and set z* = (x, v") where v* = Rgy(x)v .
[ri(x)—mi(x+ve)]

o For i€ V, sample B/ ~Ber<1—m|n{1 () —mi—v)l)

o For i€ [m]\ V, sample

. min(7r,-(x),7r,-(va*e))
B,'/NBer (1—m|n{l7m .

Piecewise-Deterministic MCMC

Discrete-time local BPS

o For i € [n], sample B; ~ Ber {[m; (x) — m; (x + ve)], /m; (x)}.
o If |B| =0 then set z’ + (x + ve, v).
o If |B| >0, then

o Compute

VU(x):= > VU(x)

i:Bj=1

and set z* = (x, v") where v* = Rgy(x)v .

o For i € V, sample B/ ~ Ber (1 — min {1, %)

o For i€ [m]\ V, sample
min(7j(x),7j(x—v*e
. (7100, mi(x—v*€))
B,'/NBer (1—m|n{l7m .

o If B =1 for any i € [n] then output z’ = (x, —v), otherwise output
z' = (x,v*).

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

o Algorithm

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

o Algorithm
o Sample N ~ Bin (|/], p).

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

o Algorithm
o Sample N ~ Bin (|/], p).

o Sample N indices i1, ..., iy in | uniformly at random without
replacement and let A : = (i, ..., in).

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

o Algorithm
o Sample N ~ Bin (|/], p).

o Sample N indices i1, ..., iy in | uniformly at random without
replacement and let A : = (i, ..., in).

o For i € A, sample X; ~ Ber (pi/p) .

Piecewise-Deterministic MCMC

Interlude: Fast simulation of Bernoulli random variables

o Let X; ~ Ber(p;) for all i € | with p; < p < 1 for i € [n].

o Direct simulation of {X;;i € [n]} has expected cost O(|/]) but we
can do this in O(1 + |/|p) once the bounds are computed.

o Algorithm
o Sample N ~ Bin (|/], p).

o Sample N indices i1, ..., iy in | uniformly at random without
replacement and let A : = (i, ..., in).

o For i € A, sample X; ~ Ber (pi/p) .

o Optional: For i€ /\ A, set X; + 0.

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from

TF(X)O(H’]T,'(X).

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from
n
7 (x) Hﬂ';(x).
i=1

o Algorithm

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from
n
7 (x) H7r,~(x).
i=1

o Algorithm
o Sample x* ~ g(x,-) from a symmetric proposal.

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from
n
7 (x) H7r,~(x).
i=1

o Algorithm

o Sample x* ~ g(x,-) from a symmetric proposal.
o With proba

o (x,x*) = ’].jai (x,x*), where a; (x,x™) ;= min {1, 7:'“(()::))})

set x' = x*.

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from
n
7 (x) H7r,~(x).
i=1

o Algorithm

o Sample x* ~ g(x,-) from a symmetric proposal.
o With proba

o (x,x*) = ’].jai (x,x*), where a; (x,x™) ;= min {1, ﬂ7’r,(()><:))})

set x' = x*.
o Otherwise set x’ = x.

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from
n
7 (x) Hﬂ',-(x).
i=1

o Algorithm

o Sample x* ~ g(x,-) from a symmetric proposal.
o With proba

*\ . . * . *Y L . T (X*)
a(x,x*) = il}a, (x,x"), where a; (x,x") := min {1, i) } ,
set x' = x™.
o Otherwise set x’ = x.
o As long as one can upper bound cheaply P(B; =1) = 1 — «; (x, x*),
subsampling tricks are applicable; e.g. logistic regression.

Piecewise-Deterministic MCMC

Subsampling for Metropolis-like chains

o Assume you want to sample from

TF(X)O(HTF,'(X).

o Algorithm

o Sample x* ~ g(x,-) from a symmetric proposal.
o With proba

*\ . . * . *Y L . T (X*)
a(x,x*) = il}a, (x,x"), where a; (x,x") := min {1, i) } ,
set x' = x™.
o Otherwise set x’ = x.
o As long as one can upper bound cheaply P(B; =1) = 1 — «; (x, x*),
subsampling tricks are applicable; e.g. logistic regression.

o For logistic regression, sufficient conditions for geometric ergodicity
presented in (Cornish et al., 2018).

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with
distribution

max<0’1 (x+v(7,+1)Hm < 7T,'(x+v(k+1)e)>‘

mi(x + vTie) mi(x + vke)

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with

distribution
max (0.1 mi(x 4+ v(mi + 1 H i 7r,~(x + v(k 4+ 1)e) .
mi(x + vTi€) mi(x + vke)
o [terate.

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with

distribution
max (0.1 mi(x 4+ v(mi + 1 H i 7r,~(x + v(k 4+ 1)e) .
mi(x + vTi€) mi(x + vke)
o [terate.

o If minT; > 1, then output z' = (x + ev,v). Update 7; < 7; — 1.

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with

distribution
max (0.1 mi(x 4+ v(mi + 1 H i 7r,~(x + v(k 4+ 1)e) .
mi(x + vTi€) mi(x + vke)
o [terate.

o If minT; > 1, then output z' = (x + ev,v). Update 7; < 7; — 1.
o Otherwise

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with
distribution

o (0’ L il v+ 1)e)> 1:[1 - (1’ mi(x + v(k + 1)e)> ‘

mi(x + vTi€) Pt mi(x + vke)

o lterate.
o If minT; > 1, then output z' = (x + ev,v). Update 7; < 7; — 1.
o Otherwise
o Compute
VU(x) = Z VUi (xs;)
irT;j=0

and set z* = (x, v*) where v* = Rgg(x)v .

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with

distribution
Ti—1)
max (0,1 — milx & v(7i + 1)e) H min | 1, milx - v(k £ 1)) .
mi(x + vTi€) Pt mi(x + vke)
o [terate.

o If minT; > 1, then output z' = (x + ev,v). Update 7; < 7; — 1.
o Otherwise

o Compute
VU (x) = Z VUi (xs;)
iiT;=0
and set z* = (x, v*) where v* = Rgg(x)v .
o With proba
. min (7;(x), Ti(x — v*€)) . [mi(x) = mi(x — v¥e)]+
LT e {1’ min (m;(x), 7 (x + v)) } L1 rmie {1’ [ri() = mi(x + ve)] }

iTj=0

9utp;|t z' = (x,v*). Sample again 7; for all i where vj* # v; for some
J € 5.

Piecewise-Deterministic MCMC

Discrete-time local BPS via Priority Queue

o Initialization: For i € [n], sample inter-event times 7; with

distribution
Ti—1)
max (0,1 — milx & v(7i + 1)e) H min | 1, milx - v(k £ 1)) .
mi(x + vTi€) Pt mi(x + vke)
o [terate.

o If minT; > 1, then output z' = (x + ev,v). Update 7; < 7; — 1.
o Otherwise
o Compute

VU (x) = Z VUi (xs;)

iiT;=0
and set z* = (x, v*) where v* = Rgg(x)v .
o With proba
. min (7;(x), Ti(x — v*€)) . [mi(x) = mi(x — v¥e)]+
L1 min {1’ min (m; (x), 73 + ve)) }] min {1’ [ri() = i+ vo)l }

iTj=0
<?utput z' = (x,v*). Sample again 7; for all i where vj* # v; for some
J € 5,-.
o Otherwise output z/ = (x, —v). Sample 7; for all i.

Piecewise-Deterministic MCMC

Discrete-time PDMP for intractable targets

o Motivation: intractable potential H (z) = [, H,, (z) p(dw).

Piecewise-Deterministic MCMC

Discrete-time PDMP for intractable targets

o Motivation: intractable potential H (z) = [, H,, (z) p(dw).
o Deterministic dynamics: a diffeomorphism ¢ : Z — Z.

Piecewise-Deterministic MCMC

Discrete-time PDMP for intractable targets

o Motivation: intractable potential H (z) = [, H,, (z) p(dw).
o Deterministic dynamics: a diffeomorphism ¢ : Z — Z.
o Acceptance probability o : Z — [0, 1] where

0@ = o0 { [loga. @) (e)

with o, : Z — (0,1]. Sample a Poisson process P on € of rate
A(dw) = —log o, (2) 1 (dw) of law denoted P (dP|z): a(z) is the
void probability of P.

Piecewise-Deterministic MCMC

Discrete-time PDMP for intractable targets

o Motivation: intractable potential H (z) = [, H,, (z) p(dw).
o Deterministic dynamics: a diffeomorphism & : Z —> Z
o Acceptance probability o : Z — [0, 1] where

0@ = o0 { [loga. @) (e)

with o, : Z — (0,1]. Sample a Poisson process P on € of rate
A(dw) = —log o, (2) 1 (dw) of law denoted P (dP|z): a(z) is the
void probability of P.

o Markov kernel: Conditional on P, with |P| > 1, sample
Z' ~ Qp(Z,-) so that

Q(z,dz’):/]P’(dP|z,|P| > 1) Qp (2, d7')
P

where P (dP|z,|P| > 1) is the law of P conditioned upon |P| >1
(|P| >1)

P(dPlz, [Pl 1) = 37 =

P (dP|z).

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

o Algorithm

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

o Algorithm
o Sample z* ~ g (| z) from a symmetric proposal.

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

o Algorithm
o Sample z* ~ g (| z) from a symmetric proposal.

o Sample a Poisson process P on Q of rate [H., (z7) — H. (2)], p (dw).

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

o Algorithm
o Sample z* ~ g (| z) from a symmetric proposal.

o Sample a Poisson process P on Q of rate [H., (z7) — H. (2)], p (dw).

o If P =0, then output 2/ = z*.

Piecewise-Deterministic MCMC

Sufficient conditions for invariance

o Simple generalizations of the conditions C1-C2 given before: allows
to derive non-reversible algorithms for intractable targets.

o Main idea provides simple Metropolis-like algorithms in this scenario
to sample from m(x) o< exp(— [, Ho (2) 1 (dw)).

o Algorithm
o Sample z* ~ g (| z) from a symmetric proposal.

o Sample a Poisson process P on Q of rate [H., (z7) — H. (2)], p (dw).
o If P =0, then output 2/ = z*.

o Otherwise output z’ = z.

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily

o Complex dynamics can be used,

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily

o Complex dynamics can be used,

o Can be used in gradient-free scenarios,

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily
o Complex dynamics can be used,

o Can be used in gradient-free scenarios,

o Can be extended to discrete spaces.

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily

o Complex dynamics can be used,
o Can be used in gradient-free scenarios,

o Can be extended to discrete spaces.

o All the methodology developed for continuous-time algorithms has a
discrete time equivalent.

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily
o Complex dynamics can be used,

o Can be used in gradient-free scenarios,

o Can be extended to discrete spaces.
o All the methodology developed for continuous-time algorithms has a
discrete time equivalent.

o Subsampling ideas/intractable target ideas/Local updating can be
used for discrete-time/reversible schemes.

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily
o Complex dynamics can be used,

o Can be used in gradient-free scenarios,

o Can be extended to discrete spaces.

o All the methodology developed for continuous-time algorithms has a
discrete time equivalent.

o Subsampling ideas/intractable target ideas/Local updating can be
used for discrete-time/reversible schemes.

o Quantitative convergence results?

Piecewise-Deterministic MCMC

Discussion

o Discrete-time non-reversible piecewise deterministic MCMC schemes
can be derived easily
o Complex dynamics can be used,

o Can be used in gradient-free scenarios,

o Can be extended to discrete spaces.

o All the methodology developed for continuous-time algorithms has a
discrete time equivalent.

o Subsampling ideas/intractable target ideas/Local updating can be
used for discrete-time/reversible schemes.

o Quantitative convergence results?

o Complexity?

Piecewise-Deterministic MCMC

