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Equivalence in Le Cam sense
Problem: When do two statistical models

E1 = (X1,T1, (P1,θ ∶ θ ∈ Θ)) and E2 = (X2,T2, (P2,θ ∶ θ ∈ Θ))
contain the same amount of information about θ?

Idea: The statistical models E1 and E2 contain “the same amount of information about any
θ ∈ Θ” if there exist two Markov kernels, K1 and K2 that do not depend on θ, such that

K1P1,θ = P2,θ and K2P2,θ = P1,θ ∀θ ∈ Θ.

Definition
The Le Cam distance ∆(E1,E2) is defined as

δ(E1,E2) = inf
K

sup
θ∈Θ

∥KP1,θ − P2,θ∥TV , ∆(E1,E2) = max(δ(E1,E2), δ(E2,E1)),

where the infimum is taken over all Markov kernels.
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Le Cam theory and decision theory

How to transfer estimators: Suppose that KP1,θ = P2,θ, with K(x ,A) = 1AS(x) for all
x ∈ X1, A ∈ T2 and θ ∈ Θ. For any estimator π2 in E2 it is possible to define an estimator π1
in E1 with the same risk as π2. Simply take

π1(x) ∶= π2(S(x)),∀x ∈ X1.

Philosophy: If two models are equivalent then they have the same statistical properties
Ô⇒ it is enough to choose the simplest one when studying these properties.

L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York. (1986).
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Lévy processes
Lévy processes are stochastic processes with independent, stationary increments and
trajectories a.s. càdlàg (right continuous with left limits).
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Why Lévy processes?

• Lévy processes are the fundamental building blocks in stochastic models with evolution
in time exhibiting sudden changes in value.

• They play a central role in many fields of science such as:
• mathematical finance: for modelling market fluctuations;
• actuarial science: for risk theory and premium calculations;
• biology: for modelling the membrane potential;
• hydrology: for modelling rainfall;
• physics: for weather and climate;
• seismology: for earthquakes;
• engineering: to model the functioning of GPS;
• many others...
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Structure of a Lévy process

Lévy process = Gaussian process + small jumps + compound Poisson process.

Formally, X ∼ (b,Σ2, ν) can be written as:

Xt = ΣWt + bt +X S
t +XB

t ,

• W is a standard Brownian motion;
• X S is a centred martingale describing the small jumps;
• XB is a compound Poisson process: XB

t = ∑Nt
i=1 Yi with N a Poisson process of intensity

λ ∶= ν(R ∖ [−1,1]) independent of the sequence of i.i.d. (Yi)i≥0,Y1 ∼ ν∣R∖[−1,1]/λ;
• W , X S and XB are independent of each other.
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Interpretation of the Lévy measure

The jump dynamics of a Lévy process is determined by its Lévy measure ν.
Interpretation of ν: ∀B ∈ B(R ∖ {0})

ν(B) = 1
t
E[ ∑

0<s≤t
1B(∆Xs)] (1)

is the average number of jumps whose size is in B .

Example Let B = (0,1] and X be a Lévy process with Lévy density ν(dx)
dx = e−x

x 1x>0. In
particular, ν(B) = ∞. Thus, from (1), we deduce that for any time interval [0, t], (Xs)s∈[0,t]
will have in expectation infinitely many jumps with size in (0,1].
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Lévy density estimation from high frequency data

Let X be a pure jump Lévy process with Lévy measure ν.

Data: (Xi∆)ni=1, with ∆ = ∆n → 0 and n∆n →∞ as n →∞.

Assumption: ν is absolutely continuous with respect to a dominating measure ν0. The
density f = dν

dν0
belongs to a nonparametric class F .

Goal: Build minimax estimators for the Lévy density f = dν/dν0, i.e. estimators that
minimise the minimax risk with respect to a loss function `:

R∗ ∶= inf
T

sup
f ∈F

E[`(T , f )].
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Remark

1 We face an inverse problem: we do not observe samples of ν but of the law of the
increments of X .

2 There is no explicit, clear link between the law of X and ν.
3 ν is an infinite dimensional object. We face a nonparametric estimation problem.
4 If ν(R) = ∞ and ν0 = Leb, the Lévy density explodes in a neighborhood of zero.
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Illustration: Compound Poisson process λ = 2, ∆ = 0.01

Lévy density: f (x) ∶= 2√
2π
e−

x2
2 ,

ν(R) = 2, ν0 = Leb One trajectory of X
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Illustration: Compound Poisson process λ = 100, ∆ = 0.01

Lévy density: f (x) ∶= 100√
2π
e−

x2
2 ,

ν(R) = 100, ν0 = Leb One trajectory of X
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Illustration: Compound Poisson process λ = 100, ∆ = 0.01

One trajectory of X Zoom

12/23 Inference for the Lévy density: the general problem Ester Mariucci // Inference for the Lévy density



Complexity reduction via approximations

X = Gaussian process + small jumps + compound Poisson process.

• Le Cam theory: consists of finding a statistical model, simpler than the Lévy one, and
asymptotically equivalent to it for what concerns the estimation of f .

• Compound Poisson approximation: consists of ignoring the small jumps. The
theoretical justification comes from the fact that any Lévy process is the (weak) limit of
a sequence of compound Poisson processes.

• Gaussian approximation for the small jumps: consists of proving that the law of the
discrete observations of the small jumps strongly converges to the law of a Gaussian
vector.
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Literature

Case ν(R) < ∞: well understood.

Case ν(R) = ∞: more challenging because of the small jumps. The analysis so far relies on
spectral approaches (L2 and L∞ loss) and one typically estimates functionals of f such as
xf (x) and x2f (x).

References (from high- and low-frequency observations):
Compound Poisson process: Buchmann and Grübel, (2003); van Es, Gugushvili, Spreij,
(2007); Duval, (2013); Comte, Duval, Genon-Catalot, (2014); Coca, (2018); Gugushvili, M.,
van der Meulen (2019).

Infinite activity: Comte, Genon-Catalot, (2009), (2010), (2011); Figueroa-López, Houdré,
(2009); Neumann, Reiß, (2009); Kappus, Reiß, (2010); Gugushvili, (2012); Trabs, (2015).

Textbook: Lévy matters IV - Estimation for discretely observed Lévy processes.
Belomenstny, Comte, Genon-Catalot, Masuda, Reiß, (2015).
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Asymptotic equivalence result

Pn ∶ (Xi∆ −X(i−1)∆)ni=1, X = X S +XB with f = dν/dν0 on I , f ∈ F ,

Wn ∶ dyt =
√
f (t)dt + dWt

2
√
n∆

√
g(t)

, g = dν0

dx
, t ∈ I , f ∈ F .

Theorem (M., 2016)

Suppose that ∆ = ∆n → 0, n∆n →∞ and n∆2
n → 0 as n →∞. Under appropriate

assumptions on F it holds:

∆(Pn,Wn) → 0 as n →∞.

The upper bound on ∆(Pn,Wn) is explicit as well as all the equivalence mappings.

E. Mariucci, Asymptotic equivalence for pure jump Lévy processes with unknown Lévy density and
Gaussian white noise. Stoch. Proc. Appl. 126.2 (2016)
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Interpretation

It is well known that a density estimation problem with i.i.d. random variables (Xi)ni=1 with
support in I and common density f ∈ F (with respect to the Lebesgue measure) is
asymptotically equivalent to a Gaussian white noise model:

dyt =
√
f (t)dt + dWt

2
√
n
, t ∈ I , f ∈ F .

Ô⇒ Estimating the Lévy density from the observation of n equidistant increments of a Lévy
process with a sample rate ∆ is “as difficult” as estimating the density of n∆ i.i.d. random
variables.
Ô⇒ If F is a class of regularity s, then we expect that the minimax rate of convergence for
the estimation of the Lévy density f ∈ F is (n∆)−

sp
2s+1 for an Lp loss.
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Compound Poisson approximation

• Let I (ε) ∶= (−A,−ε] ∪ [ε,A), ε > 0 and A ∈ (ε,∞]. For any x ∈ I (ε),

f (x) = f (x)1∣x ∣>ε = λεhε(x),

where hε(x) = f (x)
λε

1∣x ∣>ε.

• We observe that λεhε(x) is the Lévy density of a CPP with intensity λε ∶= ν(x ∶ ∣x ∣ > ε)
and jump density hε.

• We define
f̂n(x) ∶= λ̂n,εĥn,ε(x), ∀x ∈ I (ε).

• We assume f ∈ F (s,p,q,Mε),

F (s,p,q,Mε,) = {f ∈ Lp(I (ε)) ∶ ∥f ∥Bs
p,q(I(ε))

≤Mε},

whereMε ∶= λεM,M being fixed, p ∈ [2,∞), q ∈ [1,∞] and s > 1/p.
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Main result (in a simplified setting)

Set F = F (s,p,q,Mε) ∩ {f ∶ f (x) ≤ M
∣x ∣1+α ∀∣x ∣ ≤ 2} ∩ {f ∶ ∫∣x ∣≥ε f (x)dx ≥ 1}.

Theorem (Duval, M.)
Let X be a pure jump Lévy process with Lévy density f . Fix ε ∈ (0,1] and suppose that
f ∈ F for some p ∈ [2,∞), q ∈ [1,∞], s ≥ 3/2 − 1/p, Mε,M > 0 and α ∈ (0,1).
Then, for all n ≥ 1 and ∆ > 0 such that n∆ ≥ 1 and ∆ ≤ CαεαM−1, it holds that

sup
f ∈F

E[∫
I(ε)

∣f̂n,ε(x) − f (x)∣pdx] ≤ C(n∆)−
sp

2s+1 ,

where C > 0 is a constant independent of n and ∆.
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Remarks

It is possible to have a more general upper bound for E[ ∫I(ε) ∣f̂n,ε(x) − f (x)∣pdx] that holds
true for all ε ∈ (0,1], fε ∈ F , ∆ > 0, n∆ ≥ 1. From such a bound one derives that:

• The estimator f̂n,ε is consistent as soon as n∆→∞.

• Up to a log-factor, the rate of convergence for f̂n,ε is still (n∆)−
sp

2s+1 even for infinite
variation Lévy processes with a Lévy measure controlled by Mx−2 in a neighbourhood of
zero and under the assumption n∆2 ≤ 1.

• However, if the Lévy measure behaves as M ∣x ∣−(1+α) with α ∈ (1,2), then the rate of
convergence deteriorates. The rate can be explicitly computed and it depends on α.
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Gaussian approximation of the small jumps

Set σ2(ε) ∶= ∫∣x ∣≤ε x2ν(dx). Then, by a result of Gnedenko and Kolmogorov,

X S
t (ε)√
tσ2(ε)

LÐÐ→
ε→0
N(0,1).

• Convergence in law is a weak notion of convergence. Is it possible to show the
convergence for a meaningful metric?

• If so, what is the exact order for the rate of convergence?

B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables.
Addison-Wesley, 1954.
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Gaussian approximation for the small jumps in Wasserstein
distance

Theorem (M., Reiß)
Let ε ∈ (0,1] and X be any Lévy process with Lévy measure ν. For any p ∈ [1,2], there
exists a positive constant C , such that

Wp(L (X S
t (ε)),N(0, tσ2(ε))) ≤ C min(

√
tσ(ε),(∫

ε
−ε ∣x ∣p+2ν(dx)

σ2(ε) )
1/p

)

≤ C min (
√
tσ(ε), ε).

In particular, for p = 1 the bound is min(2
√
tσ(ε), ε2).

E. Mariucci, M. Reiß, Wasserstein and total variation distance between marginals of Lévy processes,
Electronic Journal of Statistics, 2018.
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Gaussian approximation for the small jumps in total variation

Theorem (Carpentier, Duval, M.)
Let ε ∈ (0,1] and X be a pure jump Lévy process with Lévy measure ν. Set νε ∶= ν∣[−ε,ε] ,
µ3(ε) = ∫ ε−ε x3νε(dx) and µ4(ε) = ∫ ε−ε x4νε(dx). Suppose that

c−
∣x ∣1+α ≤ νε(dx)

dx
≤ c+

∣x ∣1+α , for some c+, c− > 0, α ∈ (0,2).

Then, there exists a constant C > 0 such that for all n ≥ 1 and ∆ > 0 with n∆ ≥ 1 it holds:

∥L (X S
∆)⊗n −N(0,∆(σ2(ε))⊗n∥

TV
≤ C

⎛
⎝

¿
ÁÁÀ nµ2

4(ε)
∆2(σ2(ε))4 +

nµ2
3(ε)

∆(σ2(ε))3 +
1
n

⎞
⎠
.

A. Carpentier, C. Duval, E. Mariucci, Total variation distance for discretely observed Lévy processes: a
Gaussian approximation of the small jumps, arXiv:1810.02998.
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Conclusions:
• We consider the problem of the nonparametric estimation of the Lévy density from the
high-frequency observations of one trajectory of a Lévy process.

• We prove the asymptotic equivalence between the Lévy density estimation problem and
a Gaussian white noise model.

• We propose an estimator of the Lévy density based on a compound Poisson
approximation. It achieves (nearly)-optimal minimax rates for Lévy densities in Besov
balls that are bounded by ∣x ∣−2 in a neighbourhood of zero. If the Lévy density behaves
as ∣x ∣−(1+α) for some α ∈ (1,2) in a neighbourhood of zero, then then the rates are
slower.

• We provide sharp bounds for a Gaussian approximation of the small jumps in
Wasserstein and total variation distance.

• The problem of including a Gaussian approximation for the small jumps in the
estimation procedure and studying its statistical properties is still open.

Thank you for your attention!
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