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Statistical limit laws for deterministic dynamical systems

I) Heuristics and a few theorems

II) Some applications

numerical integration of deterministic multi-scale systems  

sensitivity to perturbations - Linear Response Theory  

ensemble forecasting - bred vectors  

parametrisation of tropical convection  

data assimilation  



prediction: computational cost in running model

ẋ = f(x, y)

ẏ =
1

"
g(x, y)

x 2 Rn

y 2 Rm

"⌧ 1

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

stiff high-dimensional deterministic 
 multi-scale problem

dX = F (X)dt+ ⌃ dWt

X 2 Rn

lower-dimensional stochastic problem

Motivation for stochastic parametrisation:
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Heuristics for why the fast process can be replaced by noise

Integrate the slow equation 

Homogenised stochastic equation

central limit theorem

dx(") =
1

"
f(y(")) dt

dy(") =
1

"2
g(y(")) dt+

1

"
� dWt

x(")(t) = x(")(0) +
1

"

Z t

0
f(y(")(s)) ds

= x(")(0) + "

Z t
"2

0
f(y("=1)(⌧)) d⌧

= x(")(0) +
1p
n

Z nt

0
f(y("=1)(⌧)) d⌧

X(t) = X(0) +Wt

dX = dWt

and invoking the Central Limit TheoremAssuming
Z

f(y)µ(dy) = 0
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Can be used to devise a test for  
anomalous diffusion in time series 
(GAG & Melbourne, J Stat Mech (2016))



Homogenisation

-dynamics , the statistics of the slow Then, in the limit of x" ! 0 is approximated by

where the diffusion matrix is given by a Green-Kubo formula
1

2
⌃⌃T =

Z 1

0
C(s)ds

resolved/slow:

unresolved/fast:

with the auto-correlation matrix andC(t) = Eµx [f0(x, y)f0(x, y(t))]

dx =
1

"
f0(x, y) dt+ f1(x, y) dt

dy =
1

"2
g(x, y) dt+

1

"
�(x, y) dWt

F (X) =

Z
f1(x, y) dµx +

Z 1

0

Z
rxf0(x, y(s))⌦ f0(x, y)dµx ds

fast y-process is ergodic with measure µx

Assumptions:
R
f0(x, y)dµx = 0 

(mild chaoticity assumptions)

dX = F (X) dt+ ⌃(X) dWt

formally:  
⇢(x, y) = ⇢̂(x)⇢1(y|x) + "⇢1(x, y) + . . .

dµ = ⇢(x, y)dx



Open problems and challenges

 slow dynamics couples back into the fast dynamics

ẋ =
1

"
f0(x, y) + f1(x, y)

ẏ =
1

"2
g0(x, y)

What can go wrong?

If the fast invariant measureµx does not depend smoothly on x
(“no linear response”) even averaging does not “work” 

F (X) =

Z
f1(x, y)µx(dy)

non-Lipschitz
uniqueness of solutions not guaranteed



 slow dynamics couples back into the fast dynamics

 finite time scale separation

Theory works in the limit " ! 0

" is not so smallbut in many physical applications  

Where do we need the limit?
Averaging: Large deviation principle:

Homogenisation: Central Limit Theorem (Weak Invariance Principle)

| 1
T

Z T

0
f1(x, y(s))ds� F (x)|

as " ! 0W"(t) = "

Z t
"2

0
f0(y(s))ds !w W (t)

Finite ε effects are finite size effects

Open problems and challenges



The Central Limit Theorem and the Edgeworth expansion 

For finite n there are deviations to the CLT

These are described by the Edgeworth expansion
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can be pushed to any order
involving higher-order moments



The Central Limit Theorem and the Edgeworth expansion 

For finite n there are deviations to the CLT

These are described by the Edgeworth expansion

whereH3 is the third Hermite polynomial and and are integrals��2 �
Xi of correlation functions of (Götze & Hipp (1983))

The Central Limit Theorem

Assume Xi are stationary weakly dependent random variables

Sn :=
1

�
p
n

nX

j=1

(Xj � µ) !d N (0, 1)

where µ = E[Xi] and �2 = E[X2
i ] + 2

P1
j=1 E[X1Xj+1]

⇢n(x) = �0,�2+ ��2/n(x)⇥
✓
1 +

1p
n
�H3(x/�)

◆
+ o(

1p
n
)
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Stochastic Parametrisation using the Edgeworth expansion
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ẋ =
1

"
f0(x, y) + f1(x, y)
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How to calculate the Edgeworth coefficients? 

Consider ⇢t(x(t)|x(0) = x0) =
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How to calculate the Edgeworth coefficients? 

Calculate asymptotically, using successive applications of the Duhamel-Dyson 
formula, up to            :  O("n)

Consider ⇢t(x(t)|x(0) = x0) =

Z
dxdy eLt�x0(x)µ(dy) for t = "

transfer operator

=
p
✏hf1(x0)i

E[x(")� x0]p
"

=
p
✏ ⇠

E[x̂3]

"
3
2

=
p
"

Z t
"2

0
ds1 ds2 hf0eL0s1f0e

L0s2f0i

E[x̂2]

"
= �2

GK � 2"

Z t
"2

0
ds (shf0eL0sf0i � hf0eL0sf1i) + · · ·

x̂ = x� E[x]

ẋ =
1

"
f0(x, y) + f1(x, y)

ẏ =
1

"2
g0(y) +

1

"
g1(x, y)

L =
1

"2
L0 +

1

"
L1 + L2

L0⇢ = �@y (g0⇢) , L1⇢ =� @x (f0⇢)� @y (g1⇢) , L2⇢ = �@x (f1⇢)



Theorem (Wouters & GAG, 2019)
The Edgeworth expansion of the transition probability ⇡"(⇠, t = ", x0) for the
deterministic multi-scale system up to O("

3
2 ) is given in the limit t = " ⌧ 1 and

t/"
2
! 1 by

⇡"(⇠, t = ", x0) = n0,�2(⇠)

0

@1 +
p
"

0

@
c
(1)
1
2

�
H1

✓
⇠

�

◆
+

c
(3)
1
2

3!�3
H3

✓
⇠
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◆1

A

+"

0

B@
c
(2)
1 + c

(1)
1
2

2

2�2
H2

✓
⇠

�

◆
+

c
(4)
1 + 4c(1)1

2
c
(3)
1
2

4!�4
H4

✓
⇠

�

◆
+

c
(3)
1
2

2

2(3!�3)2
H6

✓
⇠

�

◆
1

CA

1

CA

+O("
3
2 ) .

It involves only the cumulants c
(p)
" with p  4 with explicit expressions. These

cumulants only involve the leading order measure µ
(0)
x0 and, in particular, do not

involve the linear response term µ
(1)
x0 .

(Wouters & GAG, Proc Roy Soc A (2019))



x(")
j+1 = x(")

j + "f0(yj) + "2f1(x
(")
j )

yj+1 = p yj (mod 1)

(Majda et al) 
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Summary

We have used the Edgeworth expansion to push stochastic model reduction past the 
limit of infinite time scale separation, going beyond the Central Limit Theorem

The fast dynamics are replaced by a stochastic surrogate process, the parameters 
of which are tuned to match the Edgeworth expansion corrections of the full 
multi-scale system 

We have developed a machinery to calculate the Edgeworth corrections for 
continuous time deterministic systems

(Wouters & GAG, Proc Roy Soc A (2019)  +  SIAM MMS (2019))



Summary

We have used the Edgeworth expansion to push stochastic model reduction past the 
limit of infinite time scale separation, going beyond the Central Limit Theorem

The fast dynamics are replaced by a stochastic surrogate process, the parameters 
of which are tuned to match the Edgeworth expansion corrections of the full 
multi-scale system 

Use the strategy for the triad system to apply Edgeworth expansion to the  
barotropic vorticity equation 
Use Edgeworth expansions in a data-driven approach 
Prove the corrections rigorously (start with stochastic fast dynamics)

We have developed a machinery to calculate the Edgeworth corrections for 
continuous time deterministic systems

Outlook: 



Applications of Statistical Limit Theorems

Data assimilation - Ensemble Kalman Filters 

Ensemble forecasting - Stochastically perturbed bred vectors 

Linear response theory 

Numerical integration of deterministic multi-scale systems  

Parametrisation of tropical convection



dy1
dt

=
10

"2
(y2 � y1)

dy2
dt

=
1

"2
(28y1 � y2 � y1y3)

dy3
dt

=
1

"2
(y1y2 �

8

3
y3)

dx

dt
= x� x3 +

4

90"
y2 dx = (x� x3)dt+ �dW

Homogenisation

(Mitchell and GAG,  JAS (2012);  GAG & Harlim, Proc Roy Soc A (2014))

using the reduced stochastic model as forecast model leads to     
reliable ensembles via dynamics-informed inflation
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In chaotic systems a single forecast is not meaningful

Probabilistic forecast

Ensemble forecast

@NCE

II - Ensemble forecasting



@NCE

In chaotic systems a single forecast is not meaningful

Probabilistic forecast

Ensemble forecast

Use ensemble mean and spread to estimate forecast and its uncertainty

pix , 0k¥FiSq.

ME . post) -t.E.sq.it )

II - Ensemble forecasting



Dynamic adaptation

Reliability

Forecast skill

Evolve into areas in phase space with large measure

(Pazó et al 2010)A good ensemble should have (at least) these 4 properties                             :

pix , 0k¥FiSq.

ME . post) -t.E.sq.it )

II - Ensemble forecasting
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Covariant Lyapunov Vectors ln

Advantages
computationally cheap
dynamically consistent

Disadvantages
collapse to a low-dimensional subspace  

     alignment with leading Lyapunov vector  
bad spread 
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@ Wilks 
2005

Multi-scale Lorenz 1996 model
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II - Ensemble forecasting

(Giggins and GAG, QJRMS (2019))

   good ensemble diversity 

  reliable ensemble 

  good forecast skill 

  dynamically consistent 

  computationally cheap

SPBVs



Given a chaotic dynamical system

What is the change of the average of an observable

with a unique invariant physical measure µ"

ẋ = f(x, ")

parameter

upon changing the parameter from its unperturbed state with        ?

using only information about the statistics of the unperturbed system 

"0

" = "0 + �"E"[ ] ⇡ E"0 [ ] + �"E"0 [ ]0

III - Linear Response Theory

E"[ ] =

Z

D
 (x) dµ"



sufficient condition for linear response:

the invariant measure µ" is di↵erentiable with respect to "

µ" ⇡ µ"0 + µ0
"("0)�"

E"[ ] ⇡ E"0 [ ] + �"E"0 [ ]0

example:

unperturbed perturbed

Ornstein-Uhlenbeck process (stochastic)

" = "0 + �"

III - Linear Response Theory



Leith (1975)

coupled climate models: Langen & Alexeev ’05, Kirk & Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15

toy models: Majda et al ’07, ’10, Lucarini & Sarno ’11  
barotropic models: Bell ’80, Gritsun & Dymnikov ’99, Abramov & Majda ‘09

quasi-geostrophic models: Dymnikov & Gritsun ‘01

 atmospheric models: North et al ’04, Cionni et al ’04, Gritsun et al ’02/‘07, Gritsun & Branstator ’07, 
Ring & Plumb ’08, Gritsun ’10

Success stories in the Climate Sciences
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coupled climate models: Langen & Alexeev ’05, Kirk & Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15

toy models: Majda et al ’07, ’10, Lucarini & Sarno ’11  
barotropic models: Bell ’80, Gritsun & Dymnikov ’99, Abramov & Majda ‘09

quasi-geostrophic models: Dymnikov & Gritsun ‘01

 atmospheric models: North et al ’04, Cionni et al ’04, Gritsun et al ’02/‘07, Gritsun & Branstator ’07, 
Ring & Plumb ’08, Gritsun ’10

However, rough parameter dependency is known to exist in atmospheric and ocean dynamics

Note: even if linear response is not valid, this might 
not be detectable in a finite time series 

(GAG, Wormell & Wouters ‘17)

(Chekroun et al ’14) 

Success stories in the Climate Sciences

Leith (1975)
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What is known analytically?
 statistical mechanics: Kubo‘66

 forced-dissipative deterministic dynamical systems (singular measures):

 Axiom A (uniformly hyperbolic): Ruelle ’97, ‘98

 what about more general dynamical systems?

Baladi et al ’08, ’10, ’14, ’15 … 
no linear response for the logistic map

 stochastic dynamical systems: Hänggi ’78, Hairer & Majda ‘10

How can typical observables of high-dimensional systems obey linear 
response when their microscopic low-dimensional constituents typically do 

not?

We address here the following conundrum
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III - Linear Response Theory

or
 n =

1

M

MX

j=1

 (q(j)n )

macroscopic observable

statistical limit laws: 
q(j)n+1 = a(j) q(j)n (1� q(j)n )

a(j) ⇠ ⌫(a)heterogeneity

E n = hE ni+
1p
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III - Linear Response Theory

or
 n =

1

M

MX

j=1

 (q(j)n )

macroscopic observable

statistical limit laws: 
q(j)n+1 = a(j) q(j)n (1� q(j)n )

a(j) ⇠ ⌫(a)heterogeneity

Linear response holds for macroscopic observables provided

  

  
(heterogeneity)

the a(j) are distributed according to a su�ciently smooth distribution ⌫(a)

 n is a stochastic process (di↵usive limit)

E n = hE ni+
1p
M

⌘ + o(1/
p
M)

 n = E +
1p
M

⇣n + o(1/
p
M)

Gaussian process

Object of interest:



How does the numerical time integrator affect the statistical behaviour of the simulation? 

IV - Numerical integration of multi-scale systems
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Discretisation



xn+1 = xn +�t"h(xn)f0(yn) +�t"2 f(xn, yn)ẋ = "h(x)f0(y) + "2 f(x, y)

ẏ = g(y)

dX = F (X) dt+ �h(X) � dWt dX =
⇣
F (X)� 1

2
�t h(X)h0(X)E[f2

0 ]
⌘
dt+

p
�t �̂h(X) � dW̃t

F (X) =

Z

⇤
f(X, y) dµ

1

2
�2 =

Z 1

0
E[f0(y)f0('ty)] dt

F (X) =

Z

⇤
f(X, y) dµ

Discretisation

HomogenisationHomogenisation

�̂2 = E[f2
0 ] + 2

1X

n=1

E[f0(y)f0(�n y)]

(GAG & Melbourne (2013))
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Remarks: �̂2 �t ! �2 for �t ! 0

1

2
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E[f0(y)f0('ty)] dt
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F (X)� 1
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dt+

p
�t �̂h(X) � dW̃t

noise is neither Stratonovich nor Itô

for i.i.d. fast dynamics, i.e. �̂2 = E[f2
0 ], the noise is Itô

(dynamics is already rough on time scale of O(�t))

but it is never Stratonovich!

E := �1

2
�t h(X)h0(X)E[f20 ]

�̂2 = E[f2
0 ] + 2

1X

n=1

E[f0(y)f0(�n y)]



E := �1

2
�t h(X)h0(X)E[f20 ]

How can we interpret this extra drift term in the homogenised 
equation of the discretisation?

The only difference between the two homogenised equations is

Backward error analysis: 
appears in first-order schemes, but not in higher order schemes

IV - Numerical integration of multi-scale systems

(Frank & GAG, SIAM MMS (2018))
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15.6% error in mean!

" = 0.1

pdf of homogenised equation 
for full continuous-time multi-scale system

pdf of homogenised equation 
for full discrete-time multi-scale system

empirical pdf 
for forward Euler 

empirical pdf 
for second-order RK 

Can the extra term be significant? It is only O(�t)

8
><

>:

⇠̇ = �⌘ � ⇣

⌘̇ = ⇠ + r⌘

⇣̇ = s+ (⇠ � u)⇣

(fast Rössler system)

r = s = 0.25
u = 7

ẋ = "
p
xy + "2b(c� x)y2

y = ⌘ + ⇣



The inadequate representation of atmospheric convection in GCMs leads to 
considerable uncertainty in estimating climate sensitivity  
ambiguities in the numerical simulation of the Earth's climate, for example when comparing the inter-model 
mean and spread of hydrological-cycle related variables of the CMIP5 ensemble to observations.

V - The problem of parametrising small-scale convection

Deterministic convective parametrisation:
assumes single possible response of the small-scale convective state for given large-scale atmosphere-ocean state 
capable of only representing a mean effect of convective processes 
lack of variability at small scales (can propagate upscale) 
increase in spatial resolution does not allow for sufficient number of convective events to justify an average

Stochastic convective parametrisation:

physics-based
Buizza et al (1999), Lin & Neelin (2000, 2003), 
Berner et al (2005), Khouider et al (2002, 2003), 
Stechmann & Neelin (2011) and many others

transparency 

Horenko (2011): data-based Markov chain 
Dorrestijn et al (2013, 2015): data-driven  
multi-cloud model; and not so many others

data-driven

accuracy



Observational Data

Precipitation radar observations 
combined with ECMWF analysis

Darwin

KwajaleinTwo data sets at Darwin and Kwajalein
large scale vertical velocity 
small scale convective activity (convective area fraction)
6-hourly time resolution
190 x 190 km (typical size of GCM grid box)
Darwin has 1890 and Kwajalein has 1095 data points
At Darwin observations from consecutive wet seasons (2004/2005, 2005/2006, 
2006/2007), with a total of 1890 6-hour means. Over Kwajalein, the analysis is applied to 
the time period of May 2008 - Jan 2009 yielding 1095 6-hour means 

2

!

Large scale field: !

Small scale field: CAF
Davies et al (2013) 

Darwin, radar 
reflectivity @2.5km. 
23 Jan 2006 
Image courtesy: P. 
May



Kwajalein has a purely oceanic weather regime

Darwin features land-sea breeze induced convection (diurnal cycles)

std 
mean of CAF decreases for sufficiently negative !500

heavy rain events behave deterministically with approximate linear behaviour 

diurnal 

The Differences



The Similarities
pKwajalein(CAF(t)|!500(t)) ⇡ pDarwin(CAF(t)|!500(t)��!)

pDarwin(CAF(t)|!500(t)) ⇡ pKwajalein(CAF(t)|!500(t) +�!)

or analogously

ω500
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quantile regression for Kwajalein
quantile regression for Darwin with ∆ω = 0.2

Despite the different prevalent 
atmospheric and oceanic regimes at the 
two locations, the empirical measure for 
the convective variables conditioned on 
large-scale mid-level vertical velocities 
for the two locations are close  

This allows us to train the stochastic models at one location and then apply it to the other!

second-order median regression

ω715
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Instantaneous Random Variables
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#points in column I
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!̂I
Training phase:  
Use data from Kwajalein (Darwin) to determine 
the conditional probability  
Application phase: 
Draw           as random variables conditioned 
on observations of           at Kwajalein (Darwin)!500

CAF

p(CAFJ |!̂I)

Treat CAF(tk) as a random variable conditioned on the large-scale !500(tk)
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Observations
Conditional random variables

 similarly good results for conditioning on 
    or on rain rates 

 cannot resolve periods of sustained non-convection  
 near t=900

!715

Mean µ, variance �2 and skewness ⇠
of CAF conditioned on !500

µ �2 ⇠
observations 0.0080 1.29 10�4 2.38

random variable 0.0075 1.45 10�4 2.46

µ �2 ⇠
observations 0.0066 1.89 10�4 4.27

random variable 0.0073 1.80 10�4 4.29

Trained at Darwin and applied to Kwajalein

Trained at Kwajalein and applied to Darwin

(GAG, Peters and Davies, QJRMS (2016))



grid%box%profiles%

Host%model%
Dynamics)

Physics)

convec-on%scheme%

The convection scheme
receives large-scale atmospheric state per grid box 
(temperature, velocities, humidity,…)
computes vertical transport of heat, moisture
provides tendencies to update large-scale fields

How can these stochastic parametrizations be used?

The highly challenging problem of triggering 
convection is performed by the convection scheme

Mass-flux parametrizations

Mcb = ⇢air !cb ⇥ CAF

proper estimation paramount to determine 
overall strength of convection 
Deterministic: assume fixed CAF at 3%  
Stochastic: CAF conditioned on large-scale  !500

adapted from
http://climate.snu.ac.kr/gcmdocu/Phy_Cum.htm

(Wohltmann, Lehmann, GAG et al, GMD (2019)) 

http://climate.snu.ac.kr/gcmdocu/Phy_Cum.htm



