

COGNITION

BRAIN

Level of Description Computational Neuroscience

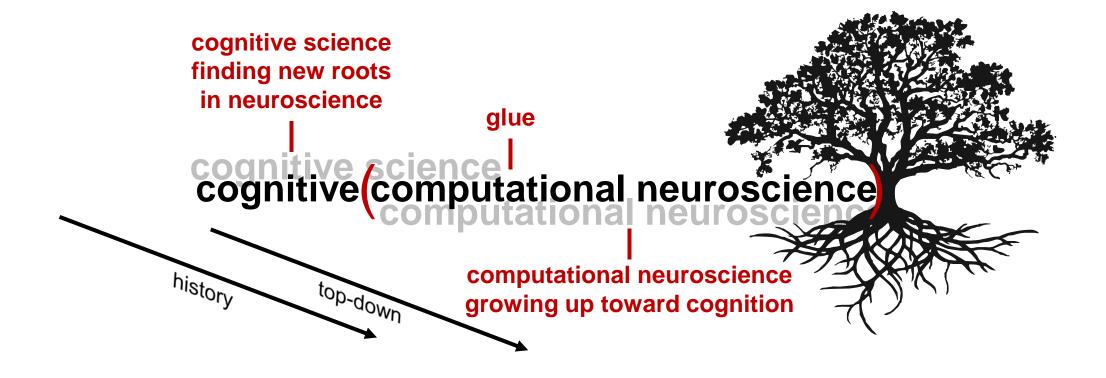
Neural network models

Cognitive Science

a *language* for expressing theories of how cognition might be implemented in brains

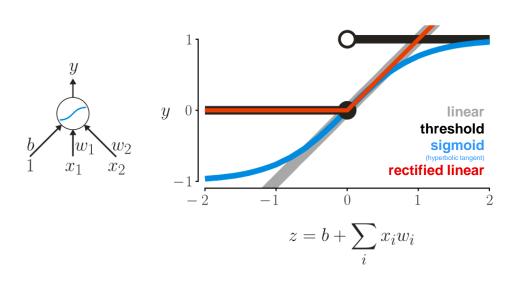
Spatial & Temporal Scale

> drawing by Matteo Farinella

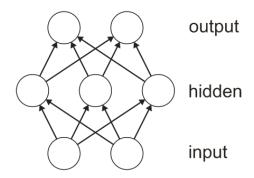


Neural network models

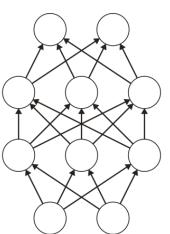
Neural network models



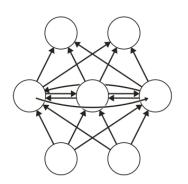
shallow feedforward (1 hidden layer)



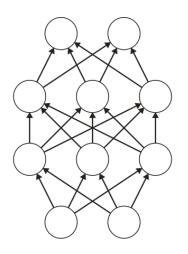
deep feedforward (>1 hidden layer)



recurrent

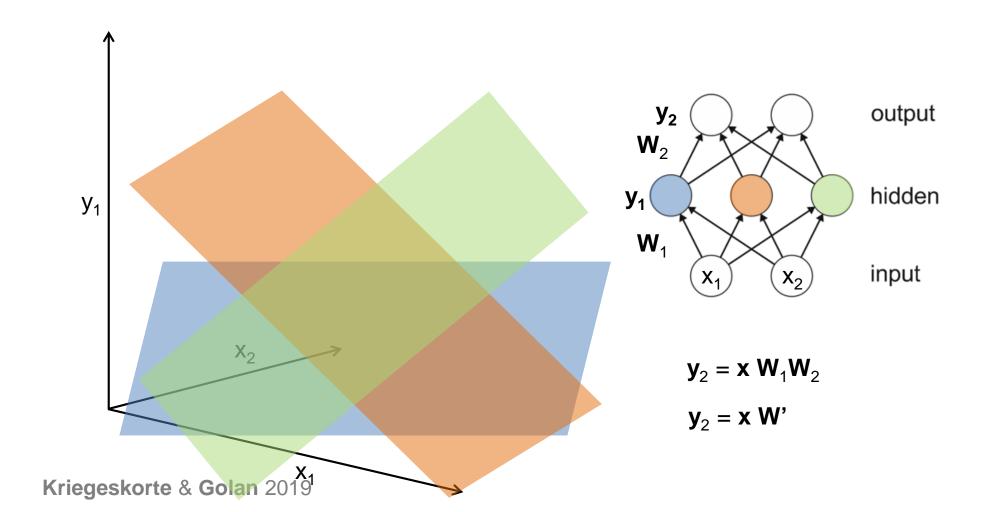


Neural network models



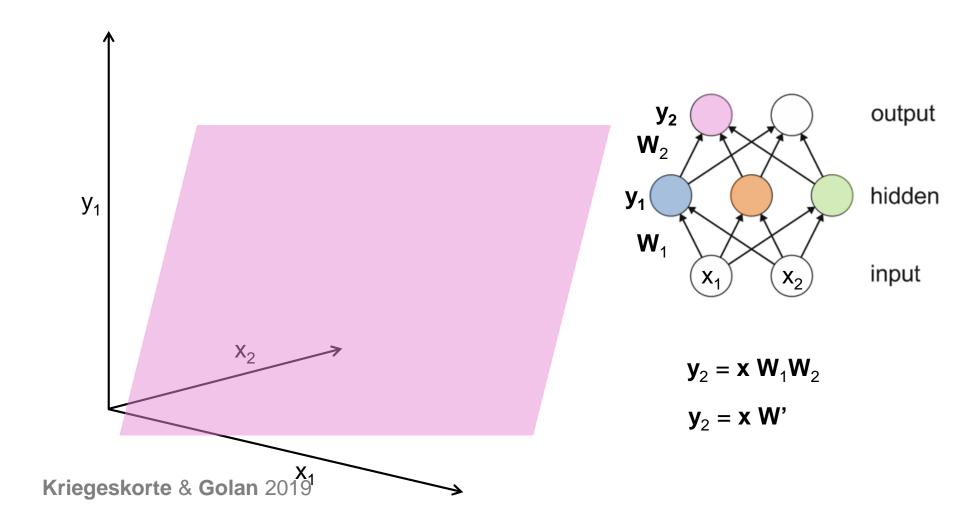
Nonlinear activation function needed to make a hidden layer useful

linear activation functions

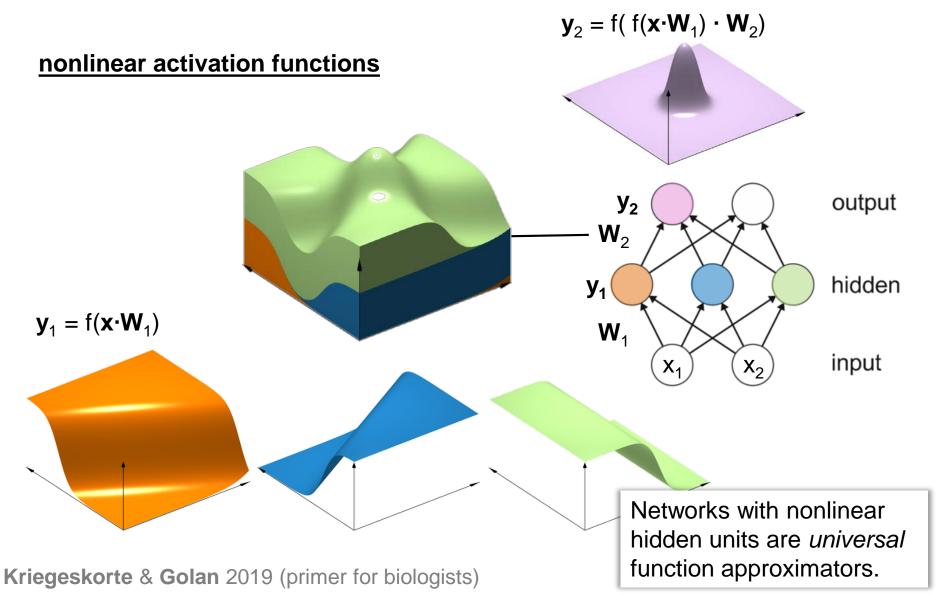


Nonlinear activation function needed to make a hidden layer useful

linear activation functions

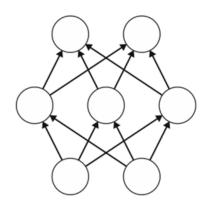


Nonlinear activation function needed to make a hidden layer useful



Why deep?

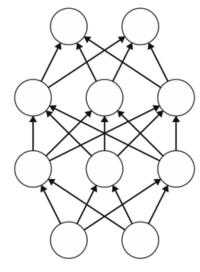
Why recurrent?



shallow

1 hidden layer

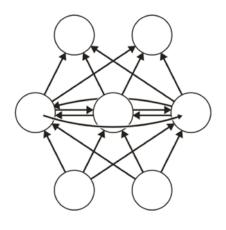
Networks with nonlinear hidden units are *universal* function approximators.



deep

>1 hidden layer

- reuse features downstream
- represent many complex functions more concisely (fewer units and weights).



recurrent

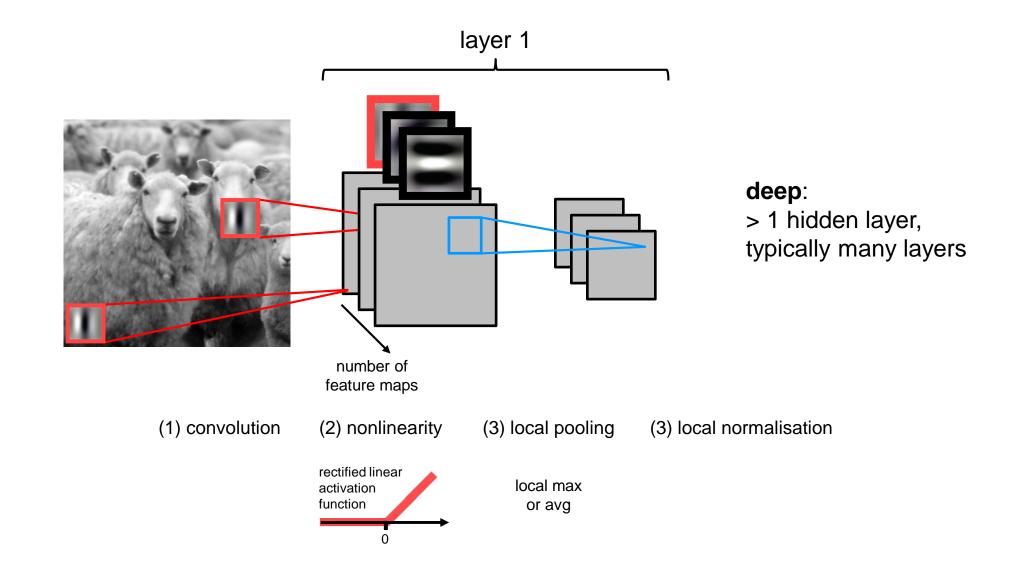
Recurrent networks

- can recycle weights and units over time
- are universal approximators of dynamical systems.

hidden units are *universal* function approximators.

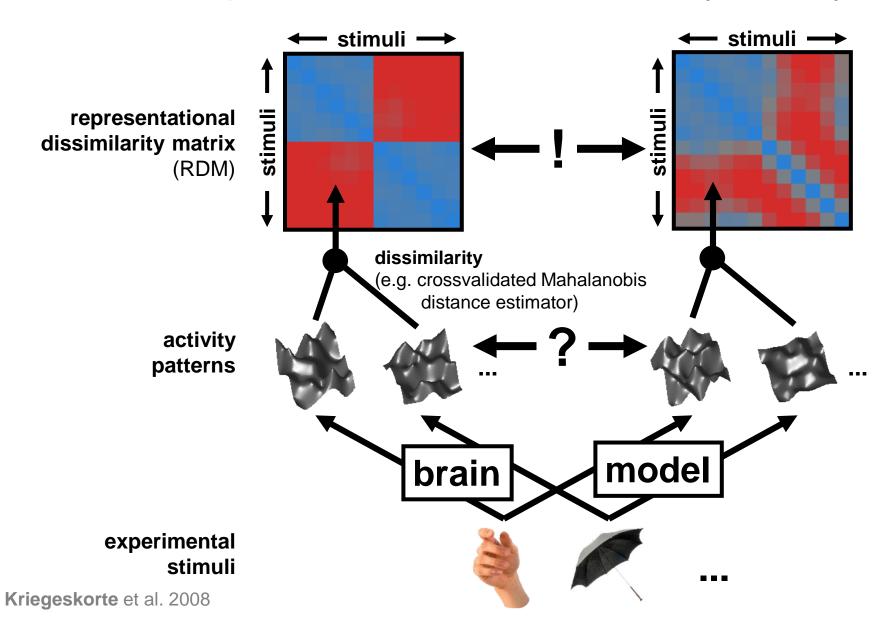
Kriegeskorte & Golan 2019 (primer for biologists)

Deep convolutional feedforward neural networks

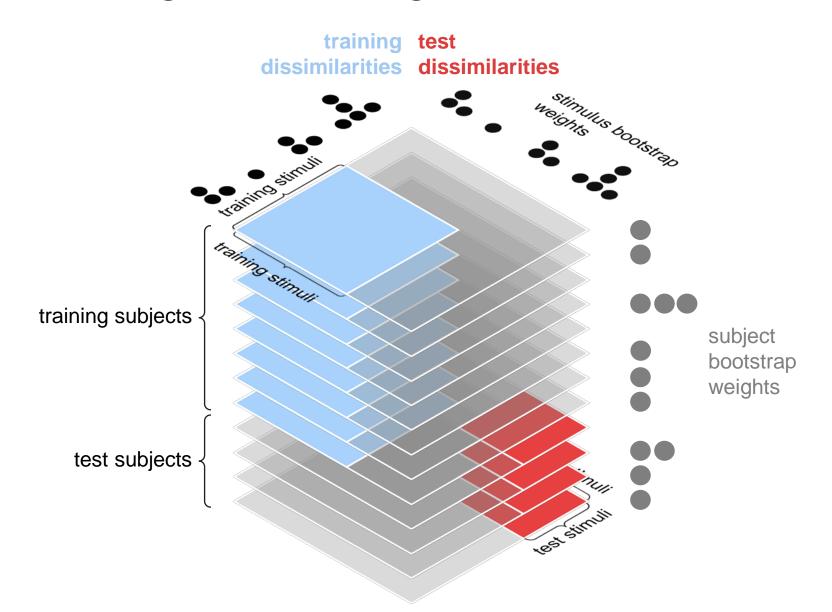


Testing neural network models with brain-activity data

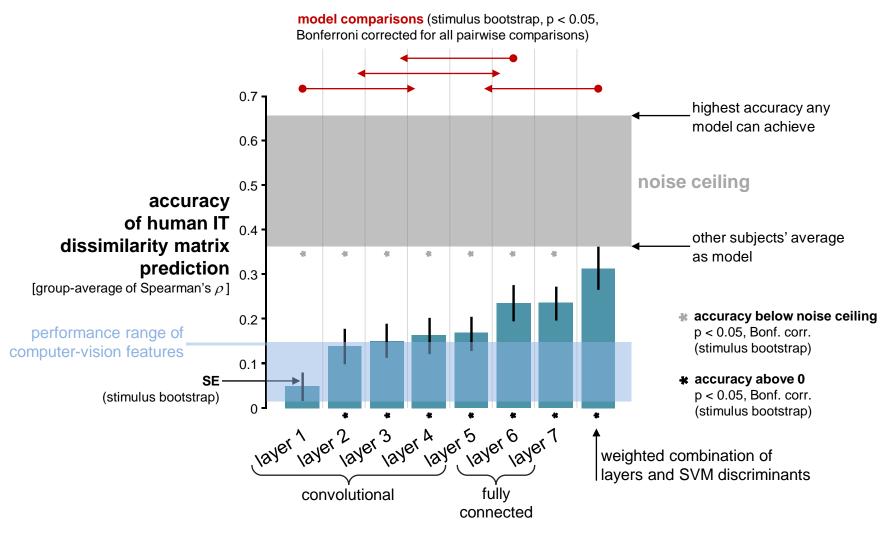
Representational similarity analysis



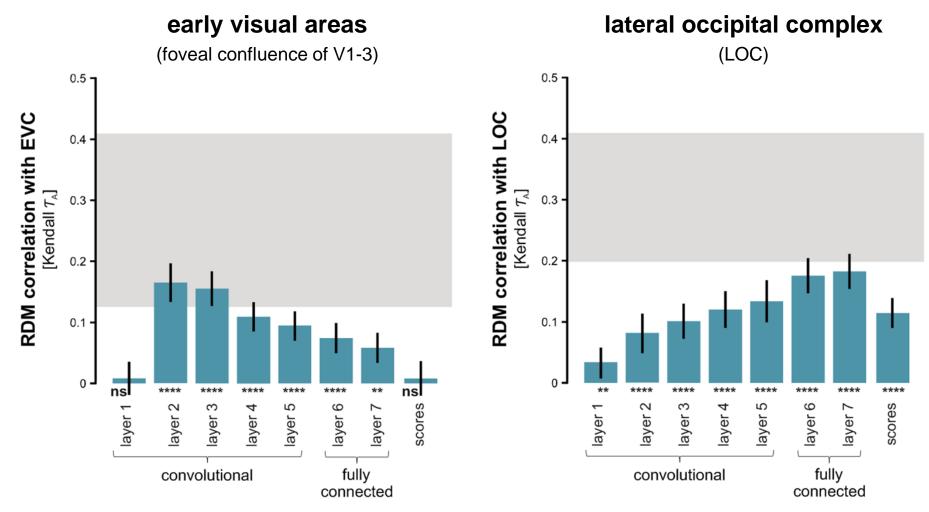
Training and testing in crossvalidation



Deep convolutional feedforward networks predict IT representational geometry

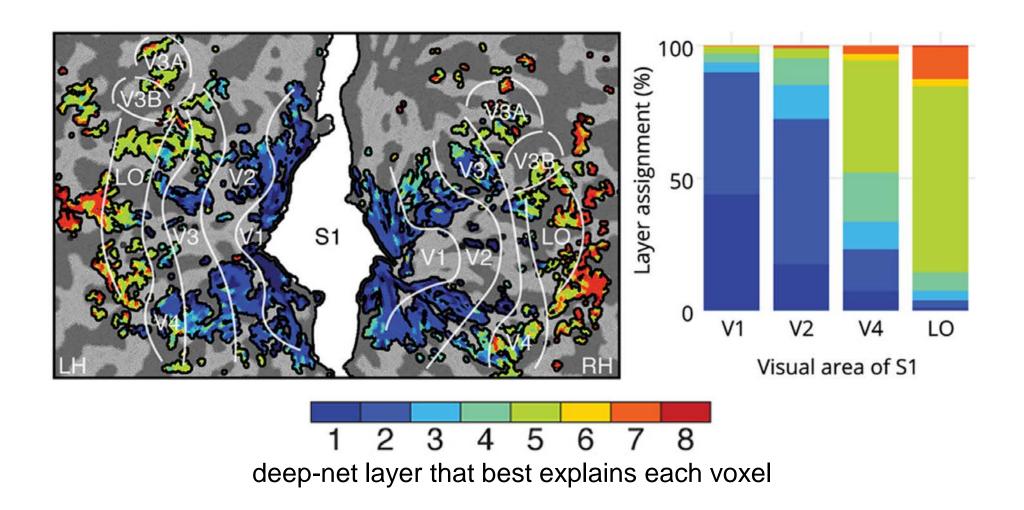


Deep-net layers correspond to stages of the ventral visual stream

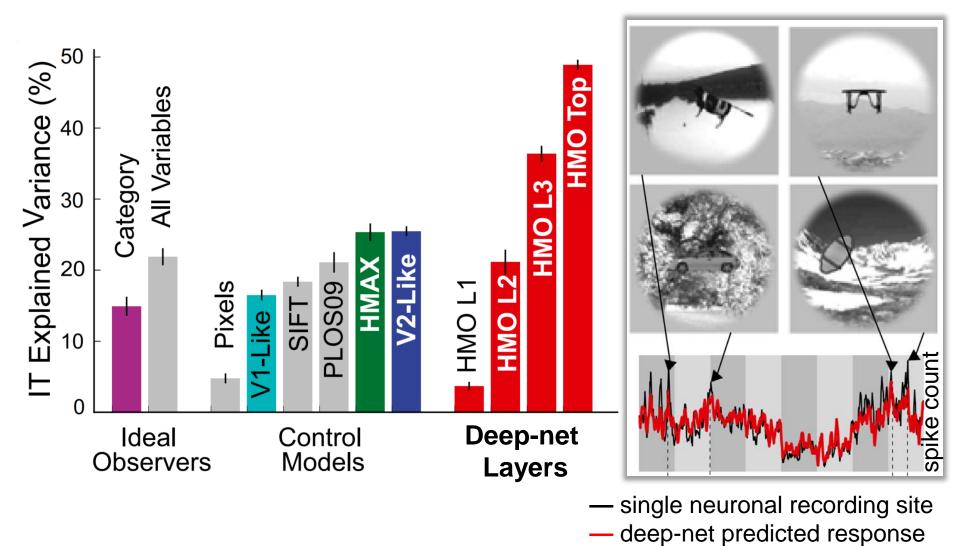


Khaligh-Razavi & Kriegeskorte 2014, Nili et al. 2014 (RSA Toolbox)

Deep-net layers correspond to stages of the ventral visual stream

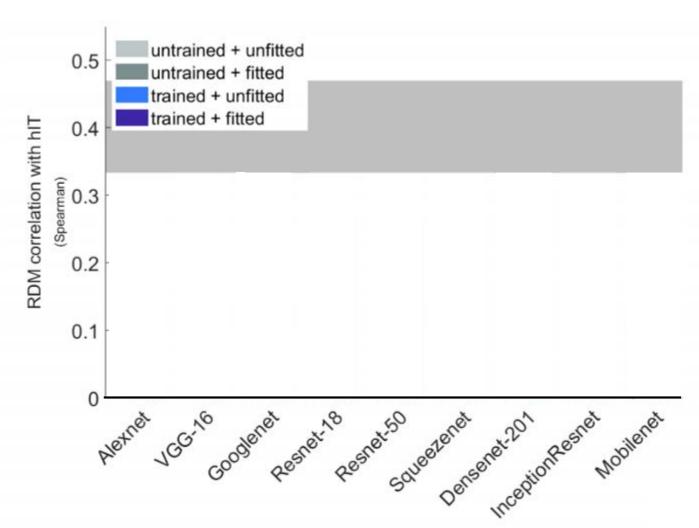


High explained variance for IT neuronal recordings

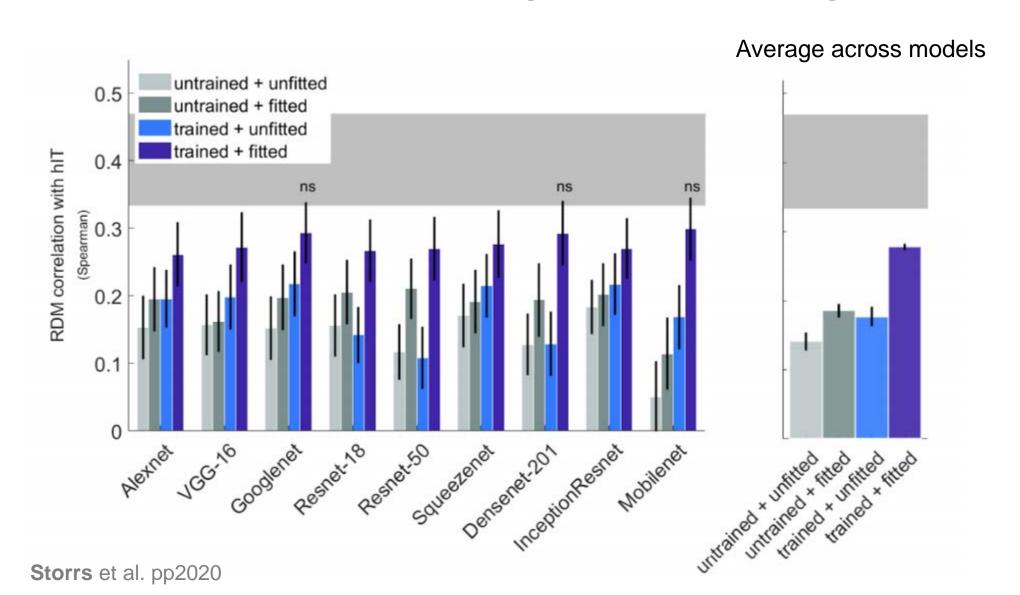


for novel image

Diverse deep feedforward neural networks predict IT, after task-training and IT-fitting



Diverse deep feedforward neural networks predict IT, after task-training and IT-fitting



The converging feedforward story...

- Deep convolutional feedforward neural networks explain how the initial sweep through the primate visual hierarchy enables recognition at a glance.
- They predict representations of novel images better than any alternative current models.
- Both the *architecture* of the model and the *task training* contribute substantially to these successes.

However, we need to build models whose architecture more closely resembles the visual hierarchy.

A major feature of biological neural networks is recurrent signal flow.

Overview

1. Recurrent neural network models

2. Controversial stimuli

Overview

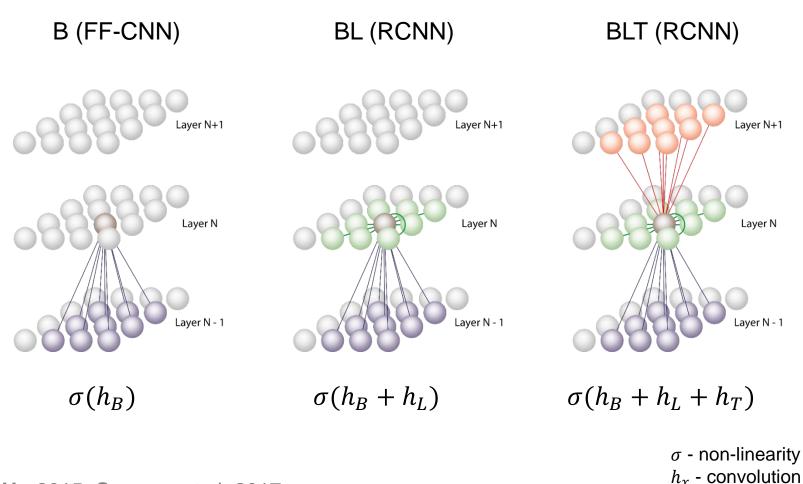
1. Recurrent neural network models

2. Controversial stimuli

Do recurrent convolutional neural networks provide better models of vision?

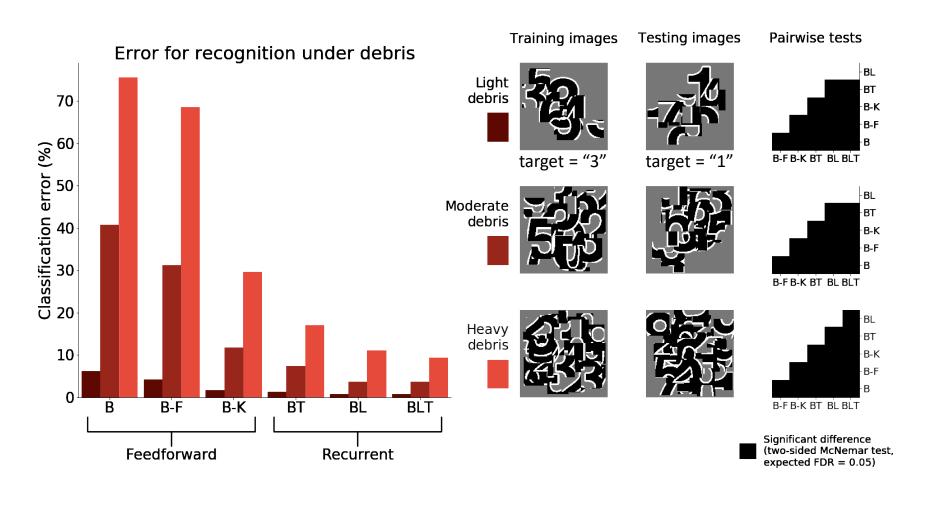
Courtney Spoerer

Recurrent convolutional neural networks

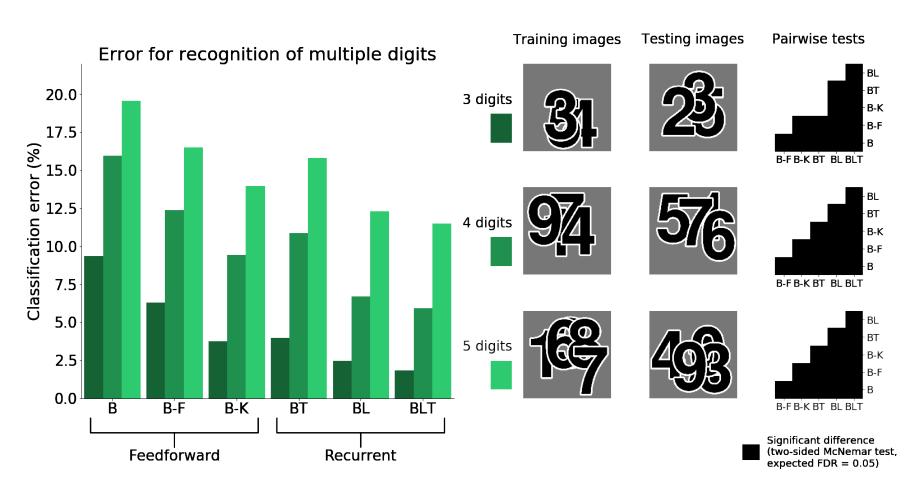


 h_x - convolution

Digit debris: recognition under occlusion



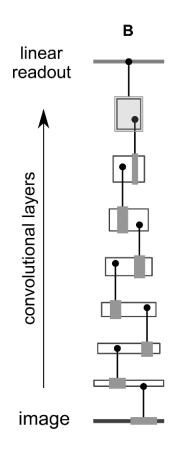
Digit clutter: Multiple digit recognition



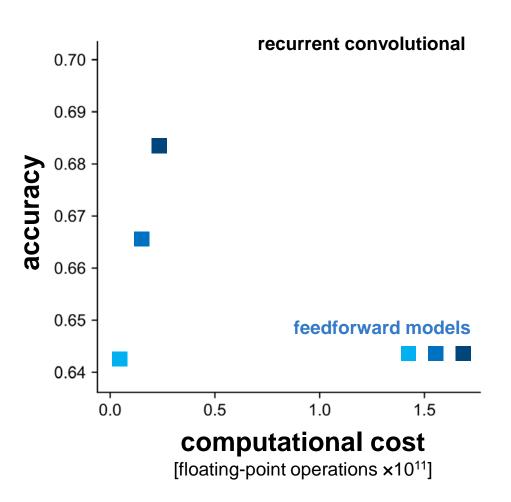
Can recurrent convolutional networks be scaled up to process natural images?

Recurrent convolutional networks trained to recognize natural images

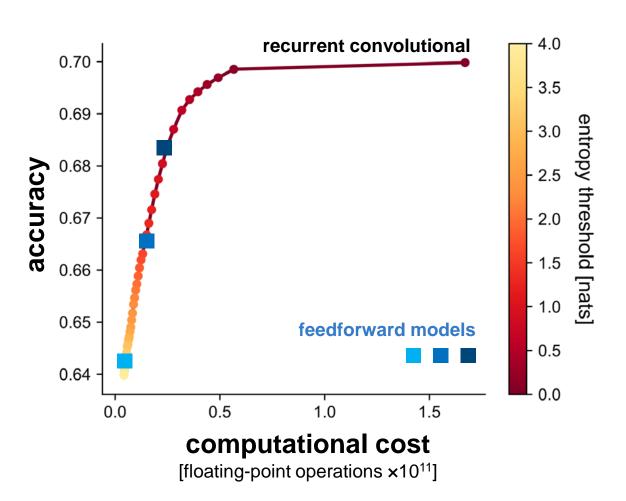
feedforward



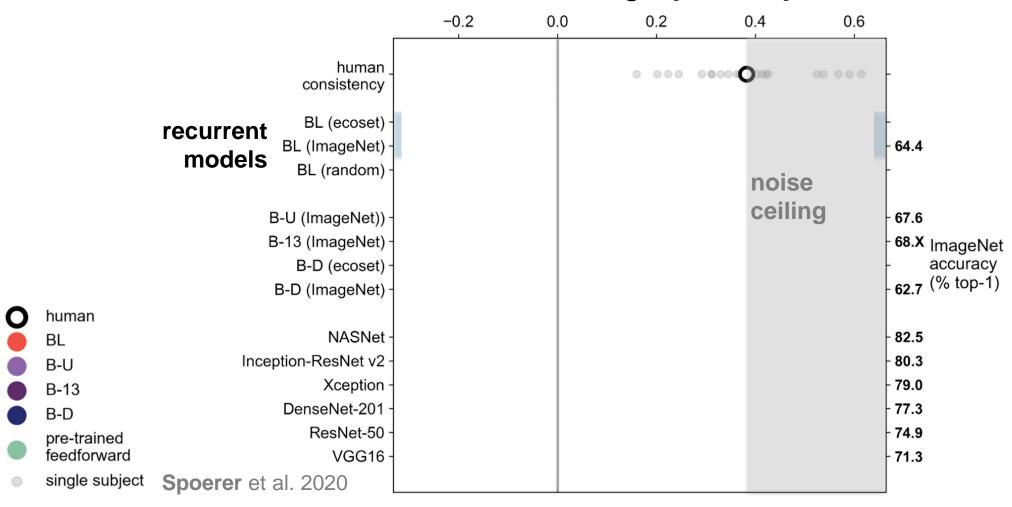
Recurrent models can trade off speed of computation for accuracy



Recurrent models can trade off speed of computation for accuracy



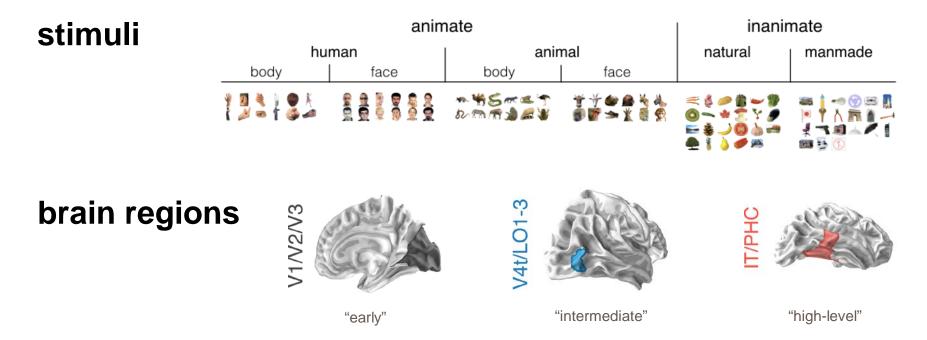
RCNNs predict human reaction times



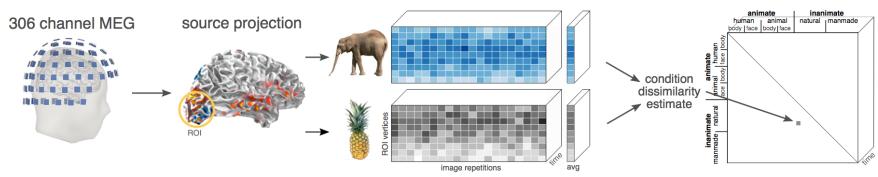


capture the representational dynamics in the human ventral stream?

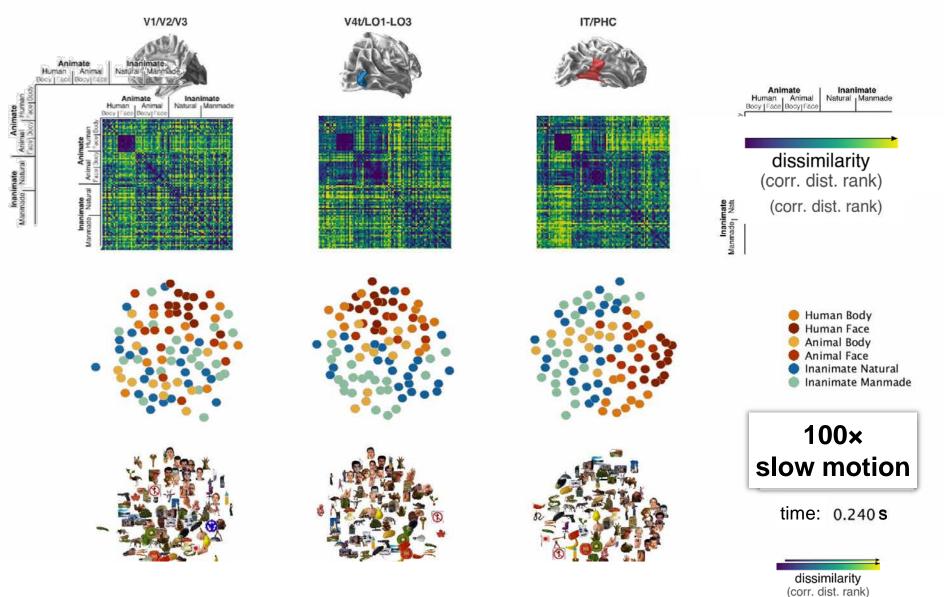
Representational dynamics



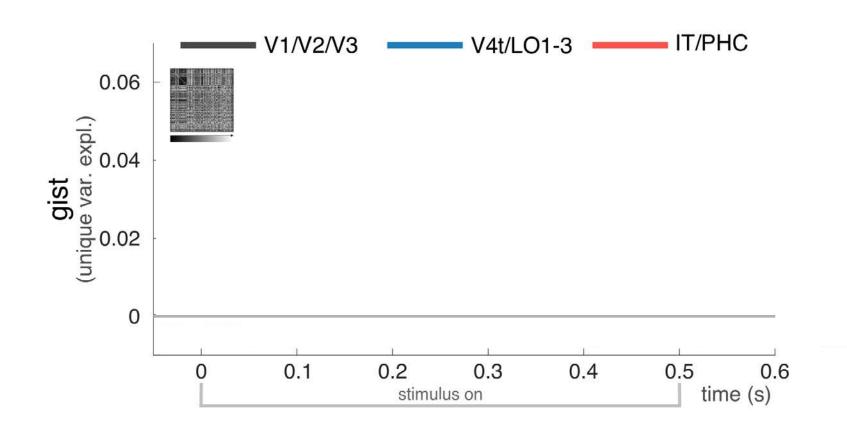
human magnetoencephalography



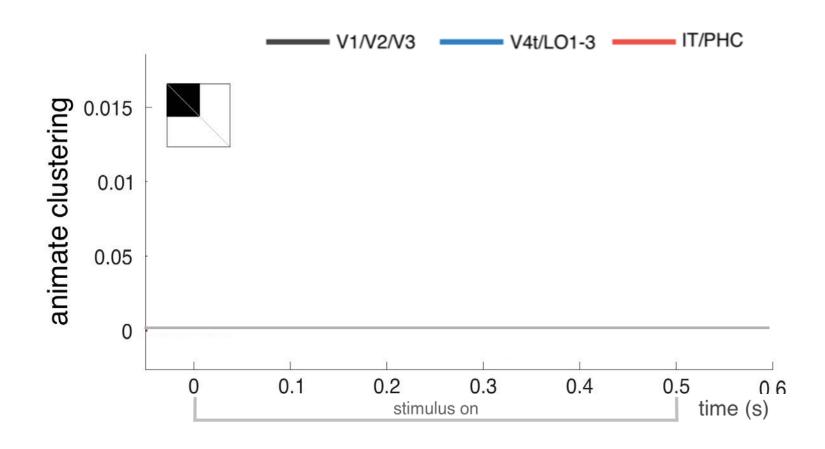
Movie time



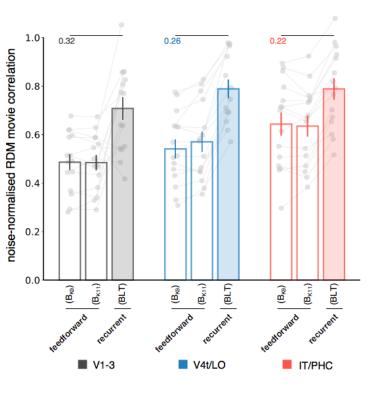
Low-level features: gist model



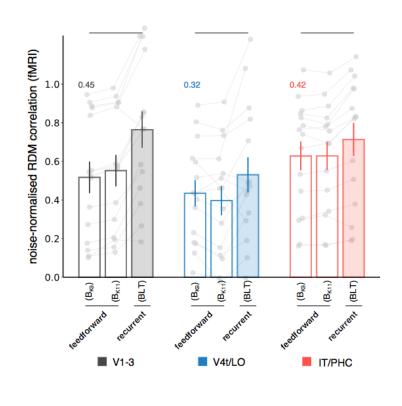
Categorical clustering: animacy



Recurrent models better explain representations and their dynamics



functional magnetic resonance imaging



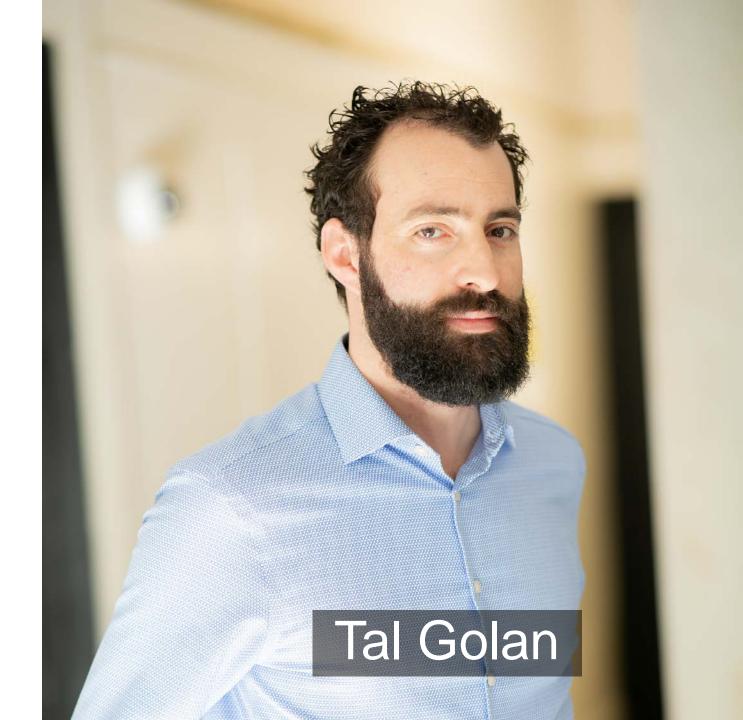
feedforward

recurrent

The emerging recurrent story...

- Recurrent neural networks provide a more neurobiologically realistic and computationally powerful modeling framework.
- Recurrent processing can enable a network to
 - recycle its computational resources,
 - perform more robust inferences, and
 - flexibly trade off speed and accuracy.
- Recurrent models also better explain the representational dynamics of the human ventral stream.

pitting neural networks against each other as models of human recognition



Controversial stimuli: motivation

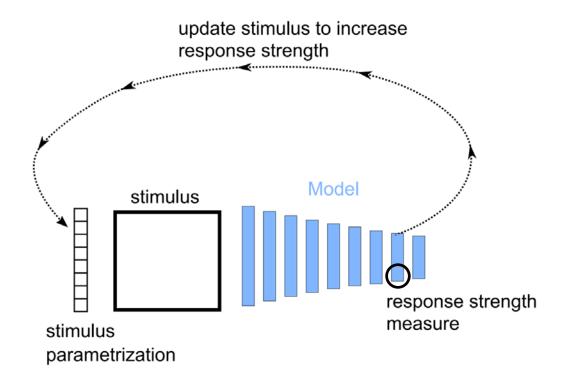
- Theoretical progress depends on experiments for which competing theories make distinct predictions.
- We can implement competing theories in testable NN models.
- However, NN models have many parameters, and theoretically distinct models often make similar predictions for natural stimuli.

Insight 1: To elicit models' distinct *inductive biases* we can test models on a population of stimuli not used in training (*out of distribution*).

- natural stimuli drawn from a different stimulus population
- synthetic stimuli (optimized to elicit bolder predictions, e.g. superstimuli, adversarial stimuli, and metamers)

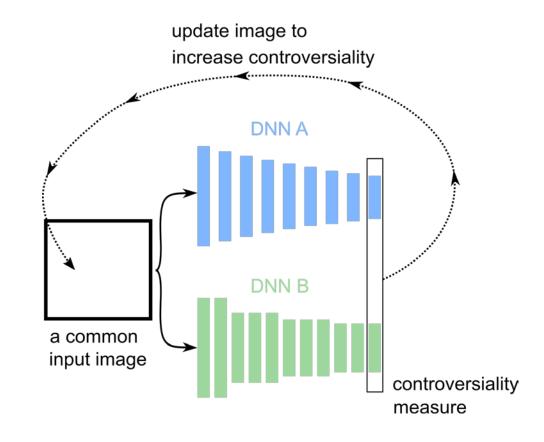
Insight 2: Since our goal is to adjudicate among models, we can create synthetic stimuli optimized to elicit distinct predictions from different models: stimuli that are *controversial* among the models.

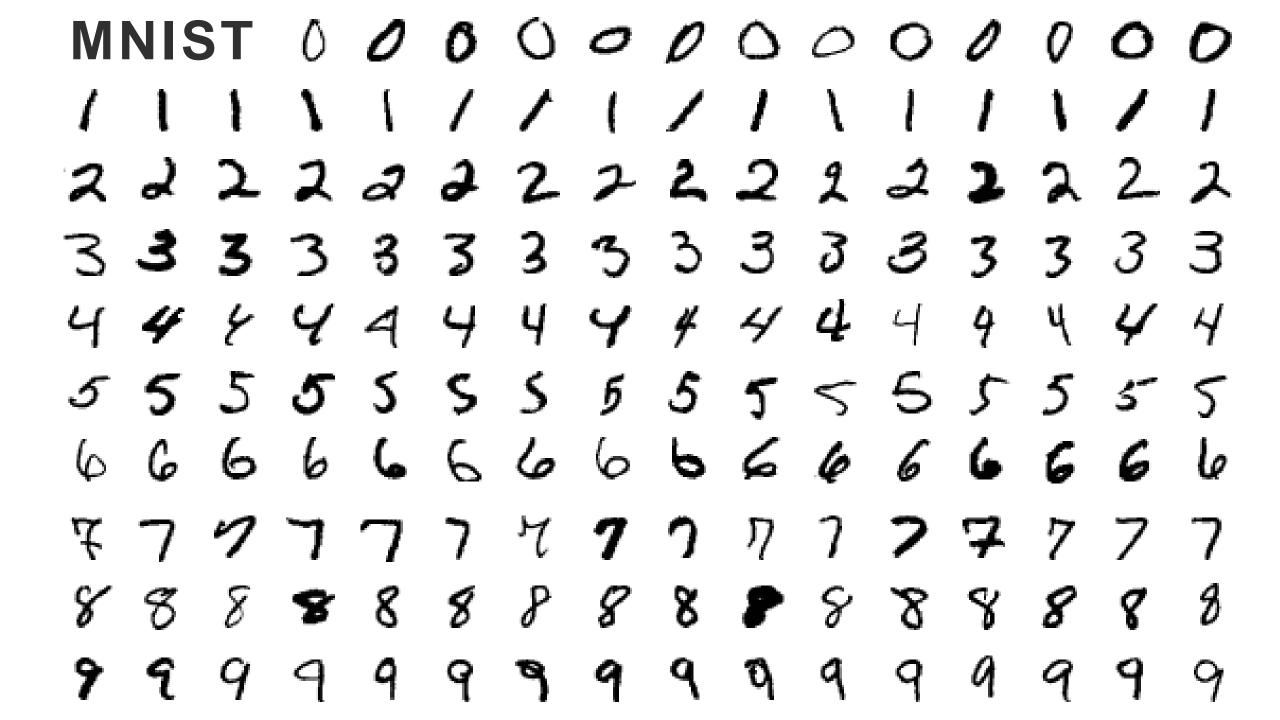
Superstimulus



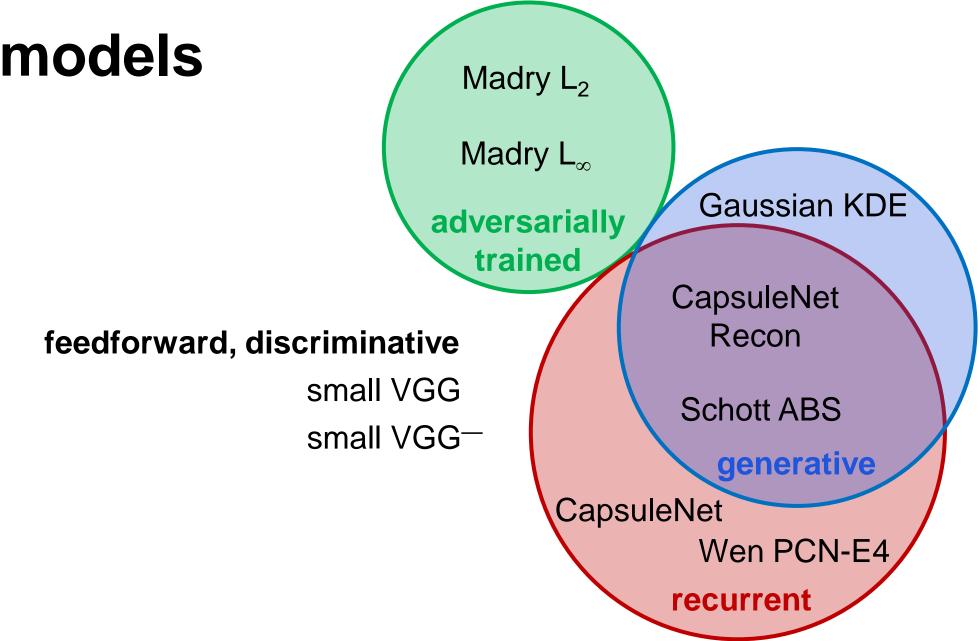
Abbasi-Asl et al. 2018, Malakhova 2018, Ponce et al. 2019, Bashivan et al. 2019, Walker et al. 2019

Controversial stimulus

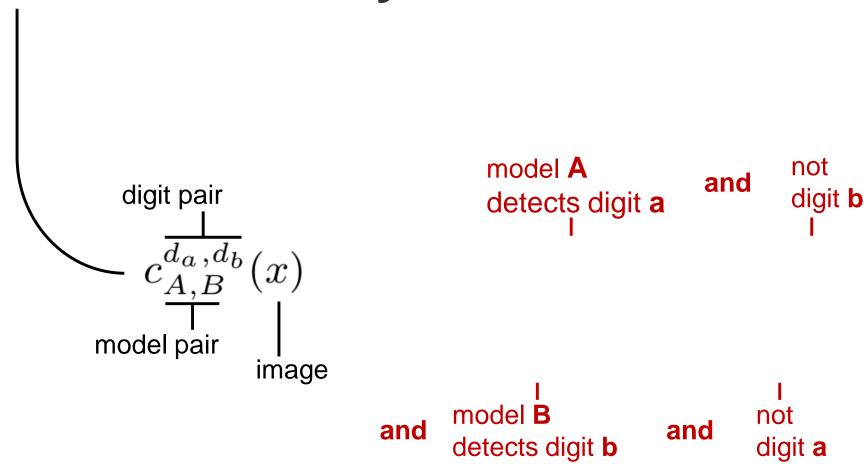




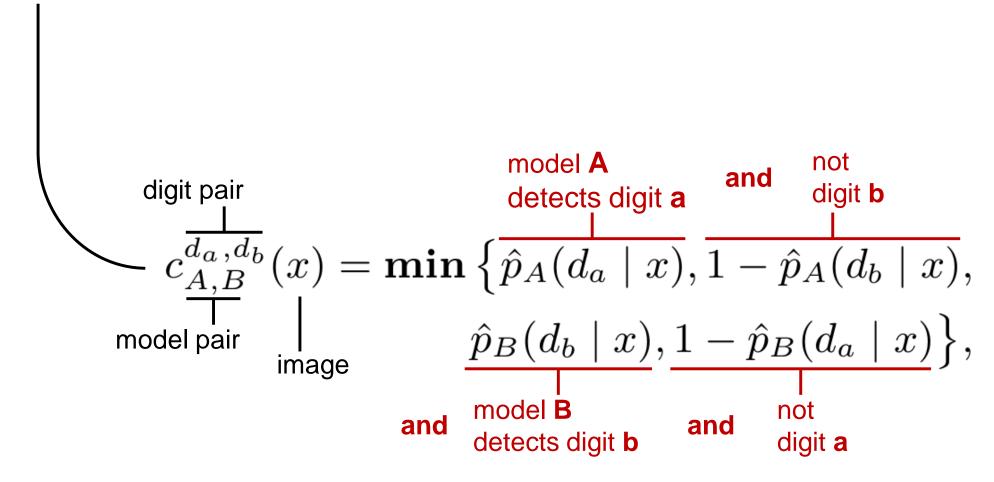
Tested models

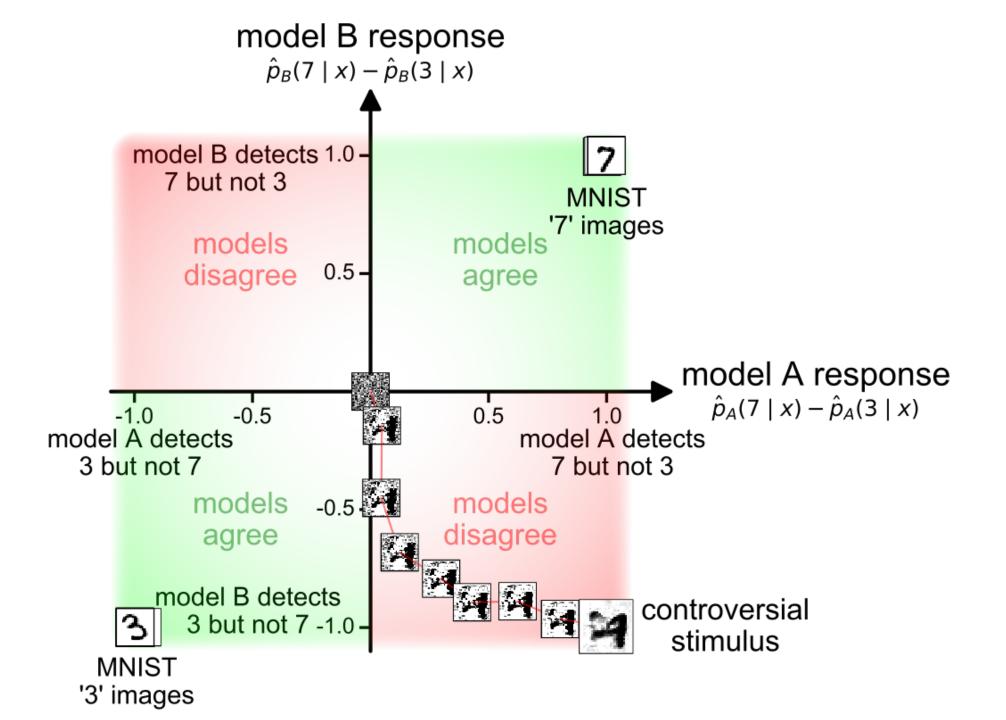


Controversiality index

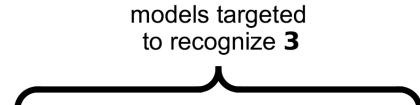


Controversiality index



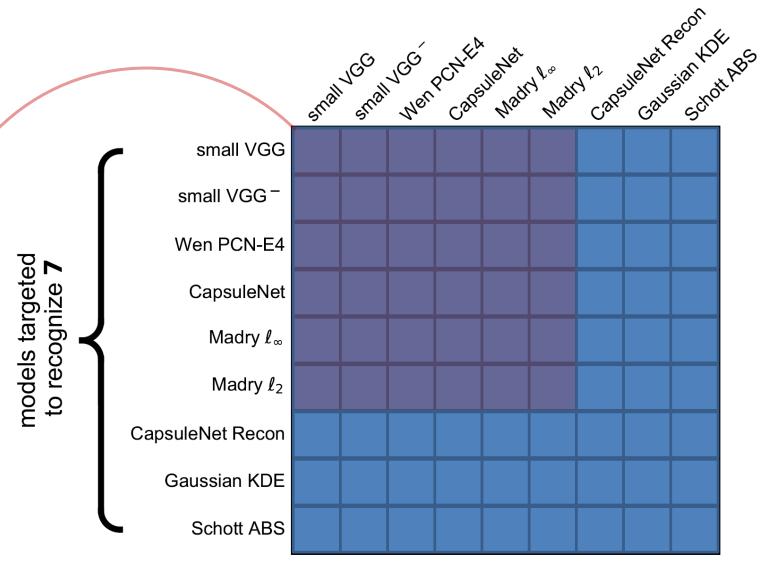


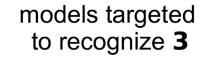
(optimized by gradient descent)

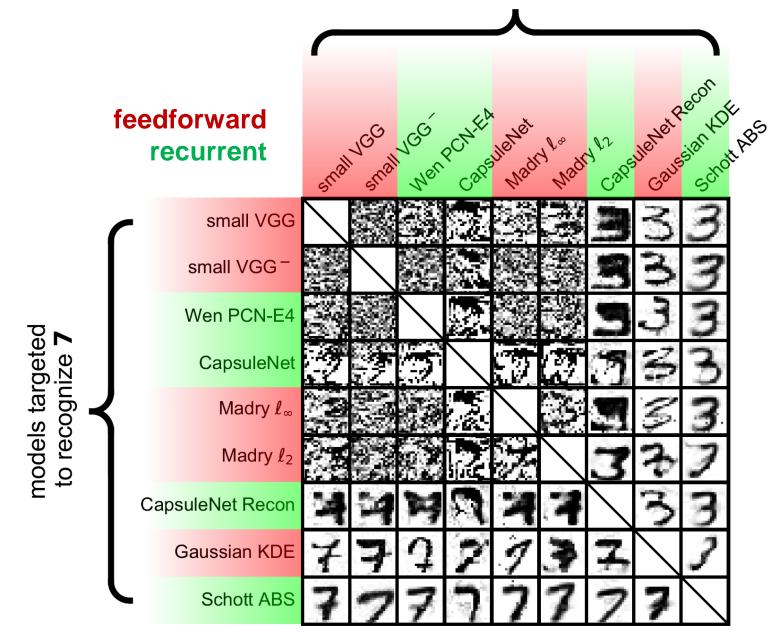


adversarial example

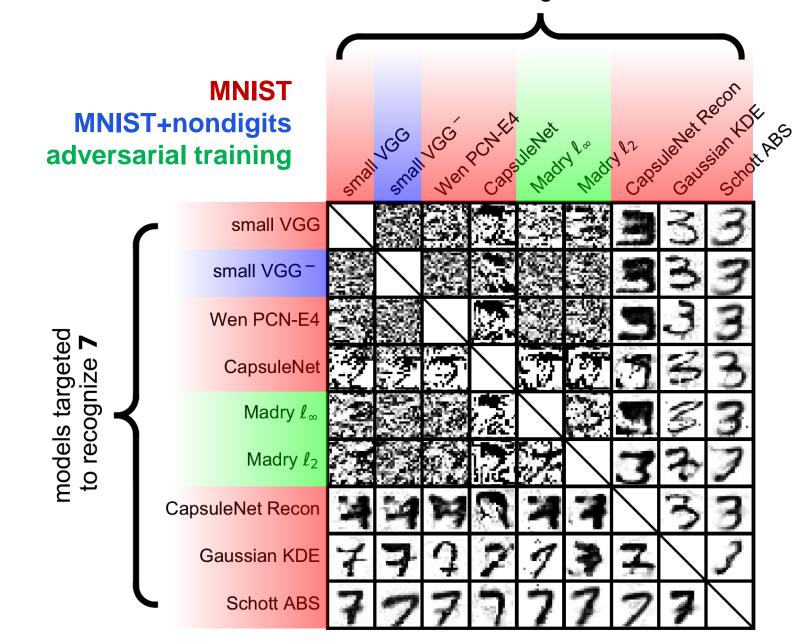
a stimulus that is controversial between a model and ground truth

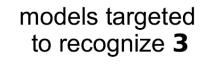


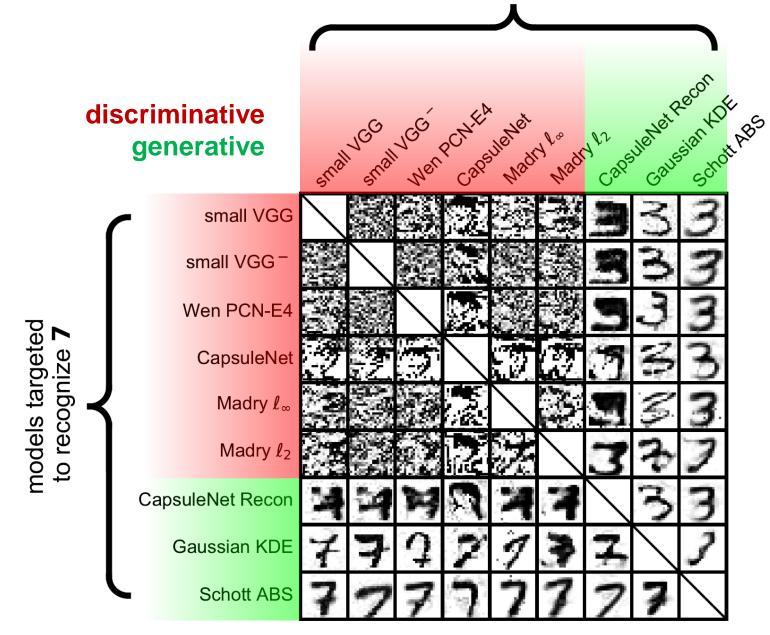


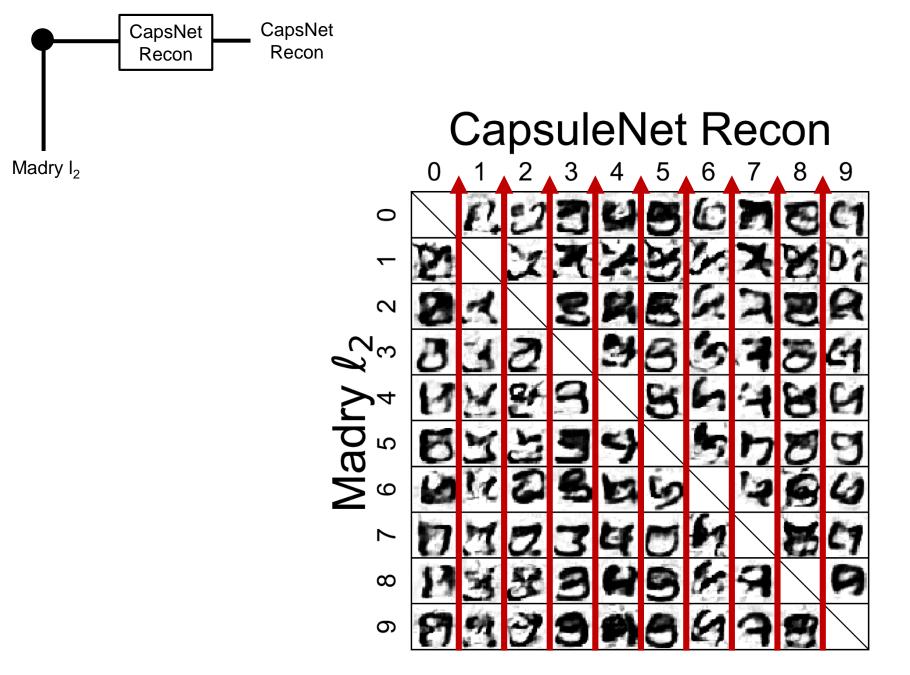


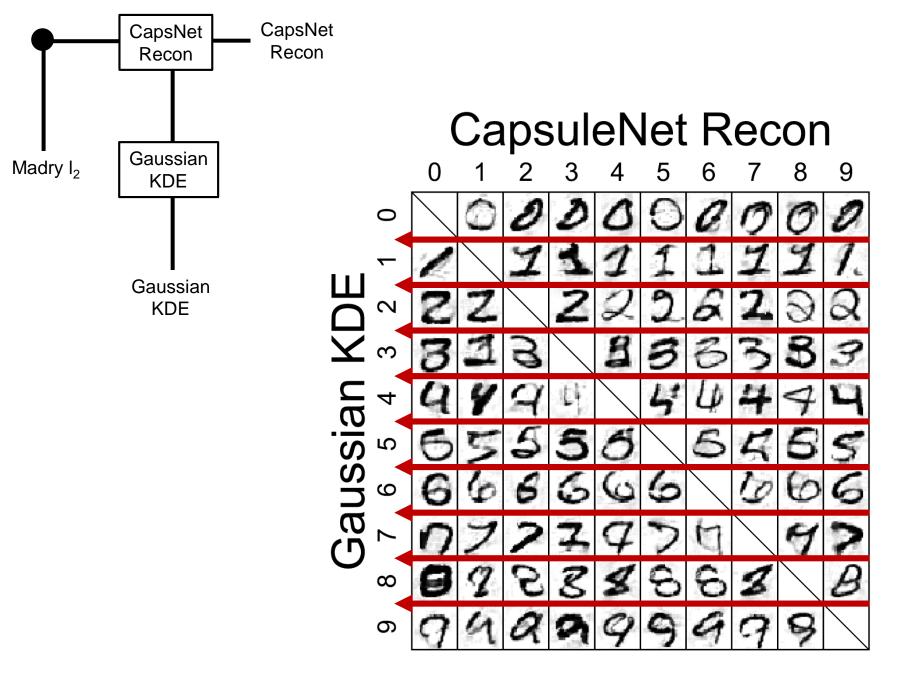
models targeted to recognize **3**

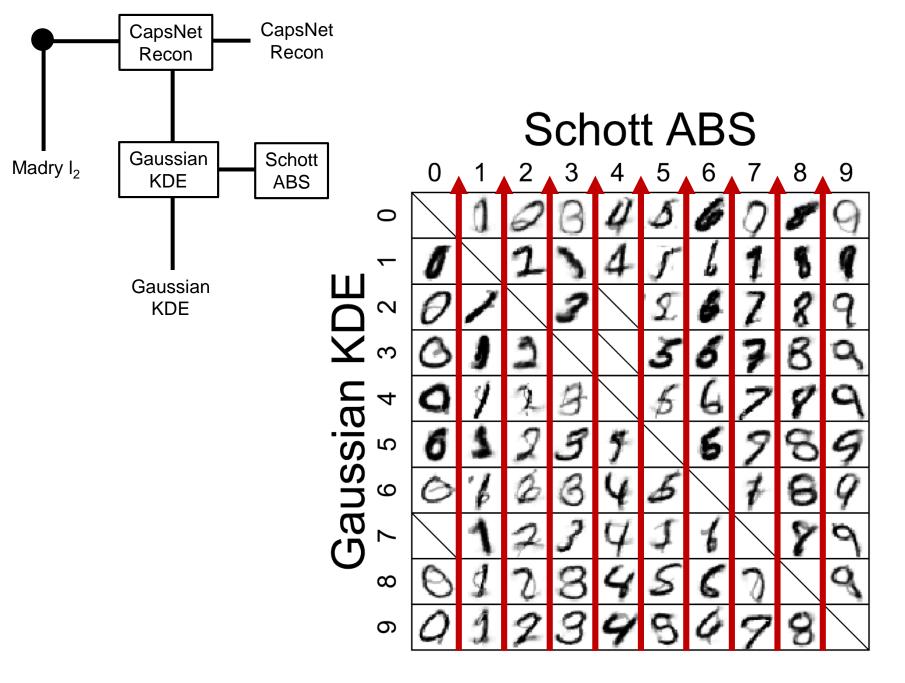


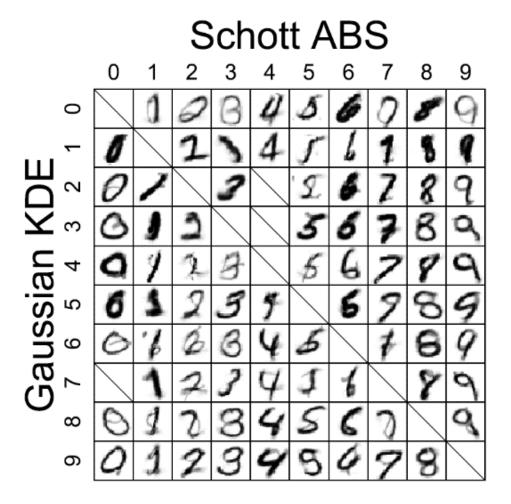










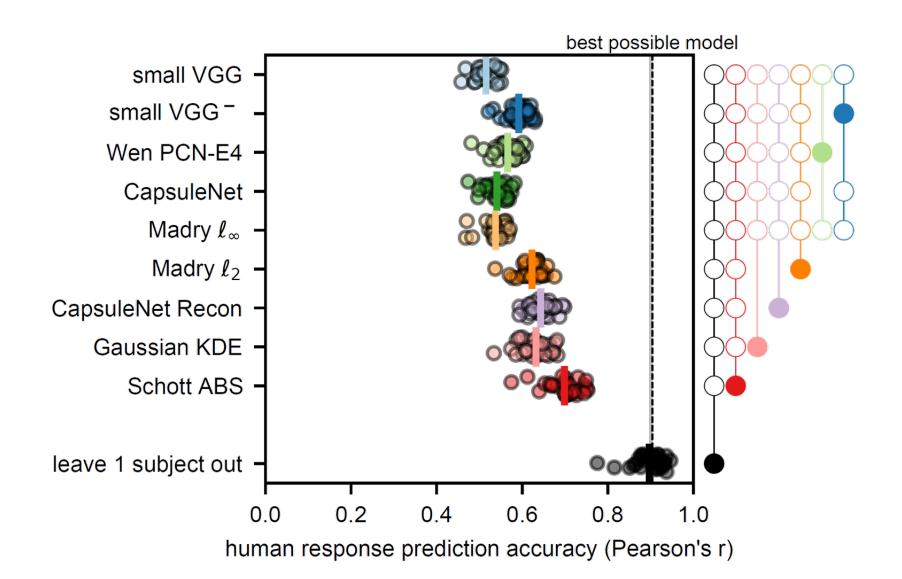


Behavioral experiment

What number does this look like?

Behavioral experiment

- 30 subjects (tested via *Prolific*)
- stimuli included 20 controversial stimuli per model pair (36*20) + 100 MNIST images = 820 images per subject
- stimuli presented in a randomized order
- 820 stimuli x 10 scales x 30 subjects (246,000 data points)

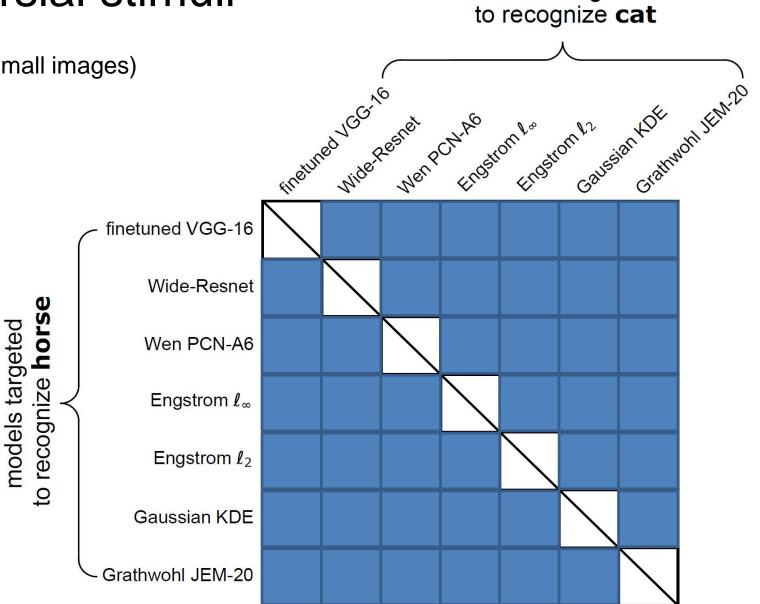


natural images

(CIFAR-10 set of small images)

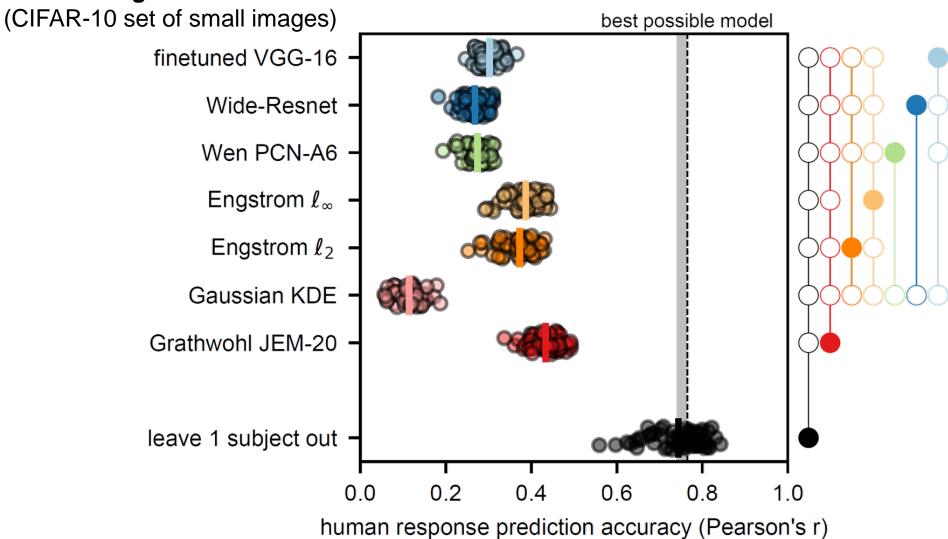
natural images

(CIFAR-10 set of small images)



models targeted

natural images



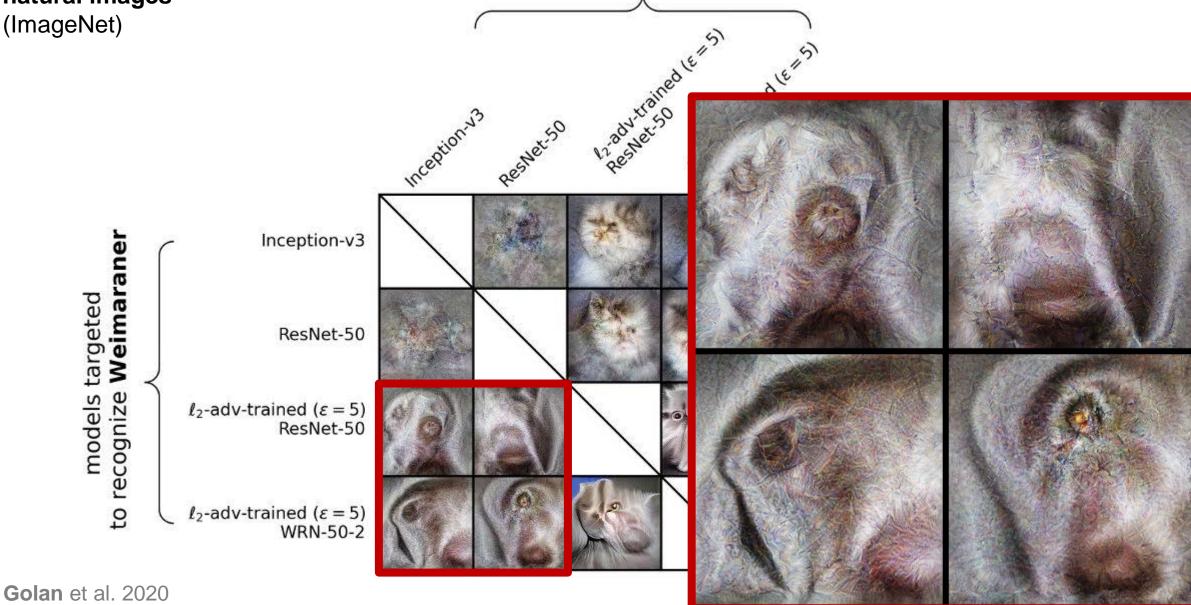
Controversial stimuli models targeted to recognize Persian cat natural images (ImageNet) Azadykrained (E. 15) Respect 50 Inception-v3 recognize Weimaraner models targeted ResNet-50 ℓ_2 -adv-trained ($\varepsilon = 5$) ResNet-50 t 2 ℓ_2 -adv-trained ($\varepsilon = 5$)

WRN-50-2

Controversial stimuli models targeted to recognize Persian cat natural images (ImageNet) Azady trained (E 15) ResNet 50 Inception-v3 Weimaraner models targeted ResNet-50 recognize ℓ_2 -adv-trained ($\varepsilon = 5$) ResNet-50 ℓ_2 -adv-trained ($\varepsilon = 5$) WRN-50-2

models targeted to recognize Persian cat

natural images (ImageNet)



Controversial stimuli models targeted to recognize Persian cat natural images (ImageNet) Azady.trained le 151 ResNet-50 inception, v3 Inception-v3 Weimaraner models targeted ResNet-50 recognize ℓ_2 -adv-trained ($\varepsilon = 5$) ResNet-50 ℓ_2 -adv-trained ($\varepsilon = 5$) WRN-50-2

Overall conclusions

- We can adjudicate among task-performing deep net models by inferentially comparing their representations to brain representations. Nili et al. 2014, Kriegeskorte & Diedrichsen 2019
- 2. Recurrent convolutional vision models better predict human ventral stream representational dynamics and reaction times

 Kietzmann et al. 2019, Spoerer et al. 2020
- 3. Controversial stimuli enable us to elicit differences in the inductive biases of deep net model.

Golan et al. 2020

4. Human vision may rely on a computational mechanism that combines elements of discriminative and generative inference.