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Gaussian Processes and applications



Gaussian processes

Gaussian Process: A stochastic process (W; : t € T) is called Gaussian if all its
finite-dimensional marginals are multivariate-normally distributed.

They are determined by their mean function m: T — R and covariance function
r: TxT—=R:

° m(t) = EWt, t e T,

® r(t,s) = cov(Ws, W,).

Applications: Machine learning (e.g. classifying hand written digits, learning the
inverse dynamics of robotic arms), Epidemiology (e.g. prelevance of malaria, Malaria
Atlas Project), Climate Sciences (e.g. modeling ice sheetaclimate interactions),
Astronomy (e.g. background radiation), Finance (e.g. stock prices), Diffusion models
(e.g. image generation),...



GP examples

Brownian Process

Integrated Brownian Process
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Prediction of infection: posterior mean
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Prediction of infection: lower credible band
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Prediction of infection: upper credible band
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Covid: impact of policy
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Gaussian Process Regression



Gaussian process regression

Model: Assume that we observe the pairs (xz, y¢), £ =1,...,n,

jid jid
ye = folxe) + 050, xe~ Gy, g0~ N(0,1),
where fy is the unknown function of interest.

Bayesian approach: Endow fy with 1 = GP(0, k).



Gaussian process regression

Model: Assume that we observe the pairs (xz,y;), £ =1,...,n

ye = fo(xe) + oy, ey Y i N(0,1),

where fy is the unknown function of interest.
Bayesian approach: Endow fy with 1 = GP(0, k).
Posterior: GP, analytic form Williams and Rasmussen (2006).

X — Kxf(O'zl + Kfr)_ly,
(x,2) = k(x,2) — Kee (0?1 + Kg) " Ks,

Here we denote y = (y1,...,yn) . f = (f(x1),...,f(x2))7,

Ky = covn(f(x), f) = (k(x,x1), ..., k(x,xn)), Keg = covn(F,f) =

[k(xi, x))|1<ij<n-



Computation

Conjugacy: the posterior has an explicit form.

Problem: Computation time of the posterior for training O(n®) and prediction O(n?).
Memory requirement O(n?). Becomes impractical for large data set.



Computation

Conjugacy: the posterior has an explicit form.

Problem: Computation time of the posterior for training O(n®) and prediction O(n?).
Memory requirement O(n?). Becomes impractical for large data set.

Problem: Standard MCMC methods are also slow, computationally too costly for large
data sets.

Scalable approaches: variational Bayes, probabilistic numerics methods, Vecchia
approximation, distributed GP, other sparse/low rank approximation of the
covariance/precision matrix (e.g. banding),...



Scaling up Gaussian Processes



Distributed Bayes:

Data segregation:

Posterior aggregation:

Distributed methods

Distributed Bayes:

Big Data Machine
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Easy
distributions
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Variational Bayes
® In VB propose a family of tractable
distributions Q for 6.

® Trade-off: simple vs complex class <—
speed vs accuracy.

e Solve the following optimization problem:
*=a in KL(Q||N(-|Y
Q" = arg min KL(QIIN(|Y))

= arg max Eq log(p(0, X)) — Eq log(q(9))

e.g. using gradient descent, coordinate
ascent.



Vecchia approximation

Joint distribution with conditionals:

n

p(WX17 ceeey WXn) = p(WX1) HP(WX,"WX17 WXz; Tty WX,'_l)'
i=2

Vecchia approximation: sparsify the conditions
n
P( WXn) ~ P( WX1) H P( WXi’Zpa(X,-))7
i=2
where pa(X;) denotes the parents of X;.
Vecchia GP approximation:
® Mother Gaussian Process
® Directed acyclic graph (DAG) providing the parent sets structure

The number of parents are restricted to m. Computational time is O(m>n).



Probabilistic numerical methods

Computation aware GPs: methods from probabilistic numerics.

Idea: represent uncertainty resulting from limited computational resources

Goal: learning representer weights W* = K 1y.
Examples of methods: Lanczos iteration, conjugate gradient descent.

Software: GPyTorch Gardner et al (2018).



Bayes vs. frequentist statistics



Bayes vs. Frequentist

Statistical model: Data Y is generated by P = {Pr: f € ©}.
Schools: Frequentist Bayes

Model: Y ~ Pg,foc®©  f ~ M (prior), Y|f ~ Ps

Goal: Recover fj: Update our belief about f:
Estimator 7(Y) Posterior: f|Y



Bayes vs. Frequentist

Statistical model: Data Y is generated by P = {Pr: f € ©}.
Schools: Frequentist Bayes

Model: Y ~ Pg,foc®©  f ~ M (prior), Y|f ~ Ps
Goal: Recover fj: Update our belief about f:

Estimator 7(Y) Posterior: f|Y
Frequentist Bayes

Investigate Bayesian techniques from frequentist perspective, i.e. assume that there
exists a true fy and investigate the behaviour of the posterior 1(-|Y).



f(x)

Nonparametric regression

—

0.0

0.2

0.4

0.6 0.8 1.0



f(x)

0.0 0.5 1.0 15 2.0

-0.5

Prior

0.0

0.2

0.4 0.6 0.8 1.0



f(x)

0.0 0.5 1.0 15 2.0

-0.5

Posterior

Ni/ b N
e Vave
T,
0.0 0.2 0.4 0.6 0.8 1.0



f(x)

0.0 0.5 1.0 15 2.0

-0.5

Posterior

0.0

0.2

0.4

0.6

0.8



f(x)

Prior: over-smoothing




f(x)

Posterior: over-smoothing




f(x)

Posterior: over-smoothing
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Posterior: under-smoothing
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Frequentist Bayes

Posterior consistency: for all € > 0

P
N(f: do(f, ) <elY™) B 1.



Frequentist Bayes
Posterior consistency: for all € > 0
P
N(F: da(f, ) < e|Y(™) 21,

Posterior contraction rate: The fastest ¢, > 0:

Pr

N(F: do(f,f) < e YM) 21



Frequentist Bayes

Posterior consistency: for all € > 0

P
N(f : do(f, ) < e|YM) 2 1.

Posterior contraction rate: The fastest ¢, > 0:

Pt

N(F: do(f,f) < e YM) 21

Uncertainty quantification: Can we get reliable uncertainty quantification, i.e. does
it hold for € = {f : d(f,f) < pn} with N(C|Y("M) = 0.95 that

P (fo € €) > 0.957



Gaussian process regression: theory
Def (Concentration function):

h log M(F : ||f]| < e€).
ea(0) = inf, I~ logN(F: [£] < o



Gaussian process regression: theory

Def (Concentration function):

h log M(F : ||f]| < e€).
ea(0) = inf, I~ logN(F: [£] < o

Theorem [van der Vaart & van Zanten (2008)] If o, (€,) < ne2 and
h(pr, pg) < ||f — g|| holds then

P
N(h(pr, p) < Menlx,y) =3 1.

Application: Minimax contraction rate €, = n=%/(1t25) (up to log n factor) for
B-smooth functions for a wide range of (optimally scaled) GP priors (e.g. squared
exponential, Matérn, integrated BM,...) and models (regression, classification, density
estimation, regression of graphs). Also uncertainty quantification and adaptation.



Variational Bayes for Gaussian Processes



Variational GP

Variational class: using inducing variables method, see Titsias (2009):

® Take uy, ..., Uy, linear functionals of f (e.g. uj = a1f(z1) + axf(z) for some
7,2 € X).

® Then f|(u1,...,um)~ GP

x = KuKog u,
(x,2) = k(x,2) = KeuKons Kuz-

where Ky, = covn(f(x), u) = K/, and Kuu = [covn(ui, uj)]1<ij<m-



Variational GP (cont)

* Quxr € Q:fl(ur,....um) wrt (ur,...,um) ~ N(p, X). These are GPs, with
X KX,,K,;ll,u,
(x,2) = k(x,2) — Keu Ko (Kus — Z) Kot Kusz,
Remarks:
e Exists optimal ¢/, ¥ Titsias (2009).
® Q" = Qu 5y is a particular rank-m approximation of M(:|x, y).

® Upper bound for the expected (wrt the prior) KL divergence between Q,/ s/ and
M(f|x,y), see Burt et al. (2020).



Examples: inducing variable methods
Inducing point methods:

® f(z1),..., f(zm) with z; € {x1, ..., x,}. Computational complexity O(m?n) after
selecting the points z;.



Examples: inducing variable methods
Inducing point methods:
® f(z1),..., f(zm) with z; € {x1, ..., x,}. Computational complexity O(m?n) after
selecting the points z;.
Population spectral features method:

* uj = [ fy);dGy, for 1 the eigenfunction of the covariance function k.
Computational complexity: O(m?n).



Examples: inducing variable methods
Inducing point methods:
® f(z1),..., f(zm) with z; € {x1, ..., x,}. Computational complexity O(m?n) after
selecting the points z;.
Population spectral features method:
* uj = [ fy);dGy, for 1 the eigenfunction of the covariance function k.
Computational complexity: O(m?n).
Sample spectral features method:

® uj =[f(x1),..., f(xn)]dj, where §j is the jth eigenvector of Kg. Computational
complexity: O(mn?).



Theory for VB GP regression



General theory for Variational Bayes
Theorem (Ray and Sz (2022))

Suppose there exists C > 0 and M,, — oo such that
ExN(f ¢ ©,]Y)1a < CeMn
for an event A. Then for any distribution Q,
ErQ(f ¢ ©n)1a < & |ERKL(QIIN(IY))1a+ Ce™™/2] .
Remarks:

e Apply previous with ©, = {f : ||f — fol]2 < Cen}

¢ Generally KL(Q||M(:]Y)) — 0 is not required for optimal convergence.

Note: Similar (but more involved) results were derived in Zhang and Gao (2020).



VB posterior contraction

Theorem: For fy : X — R assume that

(CondGP) g (€n) < né>
(CondVB) Extr(Rg) < Cné?, Ex||Re| < C.

Then
Po

Q*(h(ps, pr) < Mpe,) — 1,

where Ry is the covariance matrix of f|u.



Examples: minimax contraction rates

d
® For fy € CA(]0,1]9), B-Matérn covariance kernel, and m > n7+27 the
contraction rate is n=?/(9+28) for the population spectral features method.

® For fy € CA(]0,1]), squared exponential kernel (with rescaling parameter
b= n"Y+28)) and m > n77 the contraction rate is n~#/(1+29)(log n)5/4
both for the sample and population spectral features methods.

® For fy € $°([0,1]9), S-regular sequence prior M = Y72, j=1/>" Zy;,

id _d_ : .
Z; < N(0,1) and m > n727, the posterior mean concentrates with rate

n—P/(d+25) for the DPP-inducing points method.



VB: GP with rescaled SE

fo— | y fo—
0.5 . T PA

055 /A - true posterior } true posterior }

variational posterior — variational posterior —

—0.5 + —0.5 +

Number of inducing variables (for fo(x) = |x + 1| — |x + 3/2|%, n = 5000,
x; ~ N(0,1), 0 = 0.2, 8 = 0.8, GP with rescaled SE, Method 2):
m=80 m=40



Iterative, probabilistic numeric methods



Learning the representer weight

Goal: compute representer weights W* = K1y, with K, = (Kg + 021)

Initialization: W* ~ N(0, K, '), where wp = 0 initially best guess and Iy = K, !
excess uncertainty.

Update: Consider policies s; € R”, j = 1,..., n. lteratively update W™ based on the
information

=5 (y = Kowj1) = 5 Ko(W* = wj1)
of the residuals projected into direction of s;. We obtain W*|ao;j ~ N(w;,T;) with
wi=Gy and ;=K1

where C; is the approx of K1 at the jth iteration.



At iteration m,
W, = PIY=YN(w,,, ) (dw),

is the Gaussian process with mean and covariance functions

x = k(X,x) T Cmy,
(x, x') = k(x,x") = k(X, x) TK; k(X x') + k(X, x) T T mk (X, X').

Mathematical uncertainty Computational uncertainty

Remarks:
e W, is an approximation of the posterior.
® If the policies (sj)j<m are lin. indep., then for m = n we have C,, = K *.

e Although K;! and I, are computationally prohibitive, the combined uncertainty
Cm can be evaluated.



IterGP algorithm Wenger et al. (2022).

Algorithm 1 GP approximation scheme

1. procedure ITERGP(k, X, Y)
2: C() +~—0€e RAXn

3 for j=1,2,...,m do
4 sj + POLICY()

5: di + (I = G_1Ky)s;
6: 14— sz Ko d;

7. G+ G1+n  didT
8 end for

o pum(’) <+ k(X,)TCnY

10: km(-, ) < k(-,-) — k(X, )T Cmk(X, ")

11: end procedure
12: return GP(ptm, km)

Policy examples

(a) sj == &, j < m ~= partial Cholesky
decomposition of K.

(b) s :=1j, j < m~+ SVD of Ks.

(c) sj == dj, j < m ~ Lanczos
approximation.

(b) s5:= ngG, j < m~ CG applied to
Kov =Y.

i, Wenger et al. “Posterior and computational uncertainty in Gaussian processes.”. In: Advances in Neural

Information Processing Systems (2022).



Empirical eigenvector actions
Idea: Consider the SVD of the kernel matrix K = K = (k(x;,x;)), ;:
K= Z:U’JZI\ZI\ (1)

Lemma For the eigenvector actions s; := Uj, j < m, in IterGP, the approximation Cp,
of K;1is given by

m
1
C. = — AT 2
i ;uﬁcﬂ”"’f ?

Remark Equivalent to the empirical spectral features inducing variables VB method.



Lanczos eigenvector actions

Problem: empirical eigenvector actions are expensive to compute.

Solution: use numerical approximations for the eigenvectors. Standard approach for
SVD is Lanczos algorithm (sparse.linalg.svds from SciPy)

Lanczos method: Orthogonal projection method based on the Krylov space
Km := span{vy, Kvg, ..., K™ v}, m=12 ... n, (3)
with initial vector vo € R" with [|vl| = 1.

The approximation of the empirical eigenpairs (fi;, ;) j<m are given by the eigenpairs
(fij, G;)j<m of VWV TKVVT, where V = [v1, ..., viy] consisting an orthonormal basis of
Km.



Algorithm 1 Lanczos algorithm

1: procedure ITERLanczos(K, vy, ri1)

2 Initialize vp with ||| = 1.

3: Compute ONB vy, ..., v, of K.

4 Ve (Vi,...y V).

5 Compute eigenpairs (fij, i;)j<m of VVTKVVT.
6: end procedure

7: return (fi;, 0;)j<m.

Lemma For actions s; = ii;, j < m, the approximation of K; ! in the Lanczos version
of IterGP is given by

1 .
Cn = Z ; 5 ujuJT. (4)
1



Theoretical guarantees

Corollary For f € C5([0,1]9), for optimally tuned GP priors the corresponding
posteriors approximated either by the Lanczos iteration and CG method achieve the

minimax contraction rate n—5/(d+25) if the number of iterations exceed
mp > log(n)nd/(28+d),



Summary

® GP regression doesn't scale well O(n?).

® Various scalable approximations without theoretical underpinning, e.g.
variational, iterative, distributed, Vecchia, low rank

® Theory for these approaches:
® For well tunned priors and calibrated approximations optimal rates can be

achieved
® Adaptation is also possible (but one has to be careful).
® Reliable uncertainty quantification: even for VB.
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