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Dynamical systems

I Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.1

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature

393.6684 (1998), pp. 440–442.
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Dynamical systems

I Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.1

I Omnipresent in science and engineering.
I Earth and its geophysical systems (atmosphere, oceans)
I heart electro-dynamics
I popluation ecology (pray-predator interactions)
I climate
I brain
I robotics with target tracking, positioning, navigation
I wireless communications in automobiles
I financial markets

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature

393.6684 (1998), pp. 440–442.
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Motivation

I Dynamical systems:
I dynamics governed by some system laws (generally unknown)
I observed only partially (in space and time)

I Goals:
I understanding (causal) connections among complicated phenomena
I predicting the future, reconstructing the past

I Methodological approach:
1. model those complex systems through probabilistic, parametric models,
2. process observed time-series data to estimate unknowns

I statistics, numerical analysis, machine learning, signal processing, ... AI?

State-space models as graphs Víctor Elvira University of Edinburgh 4/44



1. Modeling: State-Space Models (SSM)

I Evolving hidden states xt 2 R
Nx , t = 1, ..., T .

I it captures the state of the system
I it allows to describe its dynamics

I Time-series data yt 2 R
Ny , t = 1, ..., T :

I noisy and partial version of the system state

xt�1 xt xt+1

yt�1 yt yt+1

... ...
pθ(xt|xt�1) pθ(xt+1|xt)

pθ(yt�1|xt�1) pθ(yt|xt) pθ(yt+1|xt+1)

I Summary of Markovian SSM:
I state model → pθ(xt|xt�1)
I observation model → pθ(yt|xt)
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2. Estimation/inference problems

I (Sequentially) observe data yt related to the hidden state xt.
I y1:t ≡ {y1, ...,yt}.

I Task: predict/estimate unknowns
I Filtering: pθ(xt|y1:t)
I Smoothing: pθ(xt�τ |y1:t), τ ≥ 1
I Prediction:

I State prediction: pθ(xt+τ |y1:t), τ ≥ 1
I Observation prediction: pθ(yt+τ |y1:t), τ ≥ 1

I estimation of model parameters (with interpretability)

I Bayesian/probabilistic inference:
I compute/approximate posterior pdfs of unknowns
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The linear-Gaussian model

I The linear-Gaussian model (LG-SSM) is arguably the most relevant SSM
I Functional notation:

I Unobserved state → xt = Atxt−1 + qt

I Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
I Probabilistic notation:

I Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)
I Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

I Methods (known θ):
I Kalman filter: obtains the filtering pdfs p(xt|y1:t) at each t

I Gaussian pdfs (i.e., compute means and covariance matrices)
I Efficient processing of yt from p(xt−1|y1:t−1)

I Rauch-Tung-Striebel (RTS) smoother: obtains p(xt|y1:T )
I requires a backward reprocessing, refining the Kalman estimates

I Methods (unknown θ; build upon KF/RTS):
I Point-wise:

I expectation-maximization (EM)
I maximum likelihood (ML)

I fully Bayesian Monte Carlo methods
I particle Metropolis
I particle Gibbs
I ...
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Kalman summary and RTS smoother
I Hidden state ! p(xt|xt�1) ; N (xt;Atxt�1,Qt)
I Observations ! p(yt|xt) ; N (yt;Htxt,Rt)

Kalman filter

I Initialize: m0, P0

I For t = 1, . . . , T

Predict stage:

x�

t = Atmt�1

P�

t = AtPt�1A
>
t +Qt

Update stage:

zt = yt −Htx
�

t

St = HP�

t H>
t +Rt

Kt = P�

t H>
t S�1

t

mt = x�

t +Ktzt

Pt = P�

t −KtStK
>
t

RTS smoother

I For t = T, . . . , 1

Smoothing stage:

x�

t+1 = Atmt

P�

t+1 = AtPtA
>
t +Qt

Gt = PtA
>
t (P�

t+1)
�1

ms
t = mt +Gt(ms

t+1 − x�

t+1)

Ps
t = Pt +Gt(Ps

t+1 −P�

t+1)G
>
t

3 Filtering distribution: p(xt|y1:t) = N (xt;mt,Pt)

3 Smoothing distribution: p(xt|y1:T ) = N (xt;m
s
t ,P

s
t )

7 How to proceed if model parameters are unknown ?
I we consider:

I known Ht and Rt

I constant and unknown At = A and Qt = Q ⇒ estimate θ = [A;Q]
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Goal of the talk

xt= Axt�1 + qt, qt á N (0,Q)

This talk: modeling and inference approaches

I Sparse graphical model to represent (i) the (Granger) causal dependencies

among the states, and (ii) the correlation among the state noises.

I Algorithms to estimate A and Q
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A graphical perspective on A

xt= Axt�1 + qt, qt á N (0,Q)

I A interpreted as a sparse directed graph

• xt 2 R
Nx contains Nx time-series

I each of them represents the latent
process in a node in the graph

• A(i, j) is the linear effect from node j at
time t� 1 to node i at time t:

xt,i =

Nx
X

j=1

A(i, j)xt�1,j + qt,i

• A(i, j) 6= 0 ) xt�1,j conditionally
Granger-causes xt,i.

A =

0

@

0.9 0.7 0 0 0
0 0 �0.3 0 0
0 0 0 0 0.8
0 �0.1 0 0 0
0 0 0.5 0 0

1

A

1

2

3

5

4

A(1, 2)

A(2, 3)A(4, 2)

A(5, 3)

A(3, 5)

A(1, 1)
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Granger causality

Disclaimer: Granger causality is a statistical test to determine if one time series
is useful to predict another one (controversial type of causality!)
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A graphical modeling P = Q−1

xt= Axt�1 + qt, qt á N (0,Q)

• P = Q�1 interpreted as sparse undirected graph (Gaussian graphical
models).

qt(n) ?? qt(`)|{qt(j), j 2 1, . . . , Nx\{n, `}} () P (n, `) = P (`, n) = 0.

P = Q−1
=











2 0 −0.1 0 0

0 0.9 0.3 −0.2 0.5

−0.1 0.3 0.8 0 0

0 −0.2 0 2 0

0 0.5 0 0 1.5











1

2

3

5

4

P (2, 5)
P (2, 3)

P (1, 3)

P (2, 4)
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Summary of the graphical interpretation

xt−1(1)

xt−1(2)

xt−1(3)

xt−1(4)

xt−1(5)

xt(1)

xt(2)

xt(3)

xt(4)

xt(5)

xt+1(1)

xt+1(2)

xt+1(3)

xt+1(4)

xt+1(5)

Summary representation of the graphical model, for the example graphs A and P from the

two previous slides.

DGLASSO (dynamic graphical lasso) algorithm: maximum a posteriori
(MAP) estimator of A and P under lasso sparsity regularization on both
matrices, given the observed sequence y1:T .
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Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q�1):

A
å
,P

å = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

� log p(A,P)| {z }
L0(A,P)

� log p(y1:T |A,P)| {z }
L1:T (A,P)

= L(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph

interpretability:
L0(A,P) = �AkAk1 + �P kPk1,

2. log likelihood:

L1:T (A,P) =

TX

t=1

1
2
log |2áSt(A,P)|+

1

2
zt(A,P)>St(A,P)�1

zt(A,P).

I evaluation running KF with (A,P)

Challenges:
I Joint minimization with non-smooth and non-convex loss.
I gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable

State-space models as graphs Víctor Elvira University of Edinburgh 16/44



Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q�1):

A
å
,P

å = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

� log p(A,P)| {z }
L0(A,P)

� log p(y1:T |A,P)| {z }
L1:T (A,P)

= L(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph

interpretability:
L0(A,P) = �AkAk1 + �P kPk1,

2. log likelihood:

L1:T (A,P) =

TX

t=1

1
2
log |2áSt(A,P)|+

1

2
zt(A,P)>St(A,P)�1

zt(A,P).

I evaluation running KF with (A,P)

Challenges:
I Joint minimization with non-smooth and non-convex loss.
I gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable

State-space models as graphs Víctor Elvira University of Edinburgh 16/44



Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q�1):

A
å
,P

å = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

� log p(A,P)| {z }
L0(A,P)

� log p(y1:T |A,P)| {z }
L1:T (A,P)

= L(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph

interpretability:
L0(A,P) = �AkAk1 + �P kPk1,

2. log likelihood:

L1:T (A,P) =

TX

t=1

1
2
log |2áSt(A,P)|+

1

2
zt(A,P)>St(A,P)�1

zt(A,P).

I evaluation running KF with (A,P)

Challenges:
I Joint minimization with non-smooth and non-convex loss.
I gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable
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Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q�1):

A
å
,P

å = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

� log p(A,P)| {z }
L0(A,P)

� log p(y1:T |A,P)| {z }
L1:T (A,P)

= L(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph

interpretability:
L0(A,P) = �AkAk1 + �P kPk1,

2. log likelihood:
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EM approach for ML estimation

(credit to M. N. Bernstein)

I EM approach for ML:2 Initialize (A(0),P(0)) and, at each iteration i � 0,
I Majorizing function (E-step):

I run KF/RTS smoother by setting (A(i)
,P(i)) ∈ R

Nx×Nx × SNx

I build majorizing function (Q(A,P;A(i)
,P(i)) ≥ L1:T (A,P), ∀(A,P)).

I Minimization step (M-step): Minimize Q(A,P;A(i)
,P

(i)) w.r.t. A and P

to obtain A
(i+1) and P

(i+1).

2R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.
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DGLASSO algorithm

I DGLASSO: A block alternating majorization-minimization algorithm:3

Initialize (A(0),P(0)), and at each iteration i 2 N,

(a) Run RTS to build function Q(A,P;A(i)
,P

(i)) (E-step)
(b) Update transition matrix (M-step):

A
(i+1) = argmin

A

Q(A,P
(i);A(i)

,P
(i)) + λAkAk1 +

1

2θA
kA�A

(i)k2F

(c) Run RTS to build function Q(A,P;A(i+1)
,P

(i)) (E-step)
(d) Update precision matrix (M-step):

P
(i+1) = argmin

P

Q(A(i+1)
,P;A(i+1)

,P
(i))+λP kPk1+

1

2θP
kP�P

(i)k2F

I Proximal terms, with stepsizes (7A, 7P ) > 0 guarantee convergence of
iterates to a critical point of L(A,P).

I Convenient bi-convex structure of Q(·, ·; eA, eP):
I step (b) is a lasso-like regression problem
I step (d) is a GLASSO-like problem
I both optimization steps (b) and (d) require modern optmisation algorithms,

e.g., Dykstra proximal splitting solver4

3E. Chouzenoux and V. Elvira. “Sparse graphical linear dynamical systems”. In: Journal of
Machine Learning Research 25.223 (2024), pp. 1–53.

4H. H. Bauschke and P. L. Combettes. “A Dykstra-like algorithm for two monotone
operators”. In: Pacific Journal of Optimization 4.3 (2008), pp. 383–391.
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Convergence theorem

Assuming exact resolution of both inner steps (b) and (d), the sequence
{A(i),P(i)}i2N produced by DGLASSO algorithm:

I satisfies

(8i 2 N) L(A(i+1)
,P

(i+1)) ÿ L(A(i)
,P

(i)), and

I converges to a critical point of L(A,P).

• Proof based on the recent work.5

5D. N. Phan, N. Gillis, et al. “An inertial block majorization minimization framework for
nonsmooth nonconvex optimization”. In: Journal of Machine Learning Research 24.18 (2023),
pp. 1–41.
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Beyond `1 norm

I DGLASSO requires the penalty term L0(A) to be
convex (e.g., `1 norm but not only).

I Non-convex penalties closer to pseudo-norm `0

would be better (SCAD, MCP, CEL0) -3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

I GraphIT algorithm6 implements an iterative reweighted (IR) scheme
I MM framework: L0(A) is approximated by a surrogate convex function

(a) True graph (b) GraphEM/DGLASSO7 (c) GraphIT

6E. Chouzenoux and V. Elvira. “GraphIT: Iterative reweighted `1 algorithm for sparse graph
inference in state-space models”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2023, pp. 1–5.

7V. Elvira and É. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.
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Experimental results of estimating A with GraphEM (simplified DGLASSO)

• Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1ÿjÿb, so that Ny = Nx =

Pb

j=1 bj . We set T = 103,

Q = �
2
QId, R = �

2
RId, P0 = �

2
PId.

Dataset Nx (bj)1ÿjÿb (�Q,�R,�P)

A 9 (3, 3, 3) (10�1, 10�1, 10�4)

B 9 (3, 3, 3) (1, 1, 10�4)

C 16 (3, 5, 5, 3) (10�1, 10�1, 10�4)

D 16 (3, 5, 5, 3) (1, 1, 10�4)

• GraphEM (DGLASSO with known Q) is compared with:

I Maximum likelihood EM (MLEM)8

I Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)9

8S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
9D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. “Hierarchical

algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: IEEE
journal of biomedical and health informatics 23.1 (2018), pp. 143–155.
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Experimental results of estimating A with GraphEM
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True graph associated to A (left) and GraphEM estimate (right) for dataset C.
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Experimental results of estimating A with GraphEM

method RMSE accur. prec. recall spec. F1

A

GraphEM 0.081 0.9104 0.9880 0.7407 0.9952 0.8463

MLEM 0.149 0.3333 0.3333 1 0 0.5
PGC - 0.8765 0.9474 0.6667 0.9815 0.7826
CGC - 0.8765 1 0.6293 1 0.7727

B

GraphEM 0.082 0.9113 0.9914 0.7407 0.9967 0.8477

MLEM 0.148 0.3333 0.3333 1 0 0.5
PGC - 0.8889 1 0.6667 1 0.8
CGC - 0.8889 1 0.6667 1 0.8

C

GraphEM 0.120 0.9231 0.9401 0.77 0.9785 0.8427

MLEM 0.238 0.2656 0.2656 1 0 0.4198
PGC - 0.9023 0.9778 0.6471 0.9949 0.7788
CGC - 0.8555 0.9697 0.4706 0.9949 0.6337

D

GraphEM 0.121 0.9247 0.9601 0.7547 0.9862 0.8421

MLEM 0.239 0.2656 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 0.9734 0.7627
CGC - 0.8477 0.9394 0.4559 0.9894 0.6139
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Experimental results: Realistic weather datasets

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

True DGLASSO MLEM

1

2

3

4

5
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Graph inference results on an example from WeathN5a dataset.10

10J. Runge, X.-A. Tibau, M. Bruhns, J. Muoz-Mar, and G. Camps-Valls. The causality for
climate competition. In Proceedings of the NeurIPS 2019 Competition and Demonstration
Track, volume 123, pages 110–120, 2020.
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Computational complexity of DGLASSO
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Figure 6: Evolution of the complexity time (left), RMSE(A∗, �A) (middle) and
cNMSE(µ∗, �µ) (right) metrics, as a function of the time series length K, for experiments
on dataset A averaged over 50 runs.
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Motivating example: Lorenz 63

I Lorenz system: non-linear and continuous time model11

I it can have chaotic behavior
I when the present determines the future, but the approximate present does

not approximately determine the future.
I it captures the essence of atmospheric convection.

11E. N. Lorenz. “Deterministic nonperiodic flow”. In: Journal of atmospheric sciences 20.2
(1963), pp. 130–141.

State-space models as graphs Víctor Elvira University of Edinburgh 27/44



Motivating example: Lorenz 63
I Lorenz 63 equations:

dx1 = −�(x1 − x2),

dx2 = ãx1 − x2 − x1x3,

dx3 = x1x2 − �x3,

I (�, ã,�) =
�

10, 28, 8
3

�

: static parameters leading to a chaotic behavior.

I adjacency matrix:
0

@
1 1 0
1 1 1
1 1 1

1

A ,

1

2

3

I Discretized (Euler-Maruyama) with ∆t:

xt,1 = xt−1,1 + ∆t(σ(xt−1,2 � xt−1,1)) + qt,1

= (1 � σ∆t) · xt−1,1 + σ∆t · xt−1,2 + qt,1,

xt,2 = xt−1,2 + ∆t(xt−1,1(ρ � xt−1,3) � xt−1,2) + qt,2

= ρ∆t · xt−1,1 + (1 � ∆t) · xt−1,2 � ∆t · xt−1,1xt−1,3 + qt,2,

xt,3 = xt−1,3 + ∆t(xt−1,1xt−1,2 � βxt−1,3) + qt,3

= (1 � β∆t) · xt−1,3 + ∆t · xt−1,1xt−1,2 + qt,3,

where qt,j ∼ N (0,∆t).
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A polynomial SSM

We consider d-degree polynomial model on xt ∈ R
Nx :

xt ∼ p(xt|xt�1,C) := N (fk(xt�1,C;D),Q) (1)

with

fk(xt�1,C;D) =
MX

i=1

 

Ck,i ·
NxY

j=1

x
Dij

t�1,j

!

(2)

I d is the maximum degree of the monomials

I M =
Pd

n=0

�
n+Nx�1
Nx�1

�
the number of monomials up to degree d in Nx

variables

I D ∈ R
NxåM a fixed integer matrix of monomial degrees associated with C

I C ∈ R
NxåM is an unknown matrix of real numbers with the coefficients

of the monomials,
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A polynomial SSM: example in Lorenz 63
I Nx = 3 dimensions in the Lorenz 63 model

I exactly represented with max degree of polynomial: d = 2

I Set of M = 10 monomials up to degree d = 2:

M = {1, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3}

with associated degree matrix

D =

7
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2

ç
,

I Discretized (Euler-Maruyama) with ∆t:

xt,1 = (1 � σ∆t) · xt−1,1 + σ∆t · xt−1,2 + qt,1,

xt,2 = ρ∆t · xt−1,1 + (1 � ∆t) · xt−1,2 � ∆t · xt−1,1xt−1,3 + qt,2,

xt,3 = (1 � β∆t) · xt−1,3 + ∆t · xt−1,1xt−1,2 + qt,3,

where qt,i ∼ N (0,∆t).

I The M monomials are used at each dimension through coefficients in

C =

7
0 1 � σ∆t σ∆t 0 0 0 0 0 0 0
0 ρ∆t 1 � ∆t 0 0 0 �∆t 0 0 0
0 0 0 1 � β∆t 0 ∆t 0 0 0 0

ç
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GraphGrad algorithm

I GraphGrad algorithm:12

I observe y1:T associated to x1:T (e.g., noisy version of one unique
dimension)

I learn the coefficient matrix C using a MAP estimator under a sparsity
inducing penalty

I first-order optimisation scheme (proximal-gradient method)

bC = argmin
C2R

Nx×M

L(C|y1:T ,�) = argmin
C2R

Nx×M

`(C) + �L0(C), (3)

where `(C) = − log(p(y1:T |C)), and L0(C) = ||C||1 is a sparsity
promoting penalty
I gradients of the log-likelihood, approximated via diff. particle filtering

p(y1:T |C) ≈
T
Y

t=1

 

1

K

K
X

k=1

w
(k)
t

!

, (4)

I penalty term R using its proximity operator, which is both faster and avoids
the requirement for R to be differentiable.

12B. Cox, E. Chouznoux, and V. Elvira. “GraphGrad: Efficient Estimation of Sparse
Polynomial Representations for General State-Space Models”. In: arXiv preprint
arXiv:2411.15637 (2024).
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GraphGrad in Lorenz 96
Lorenz 96 system with variable dimension:13

xt+1,i = (1−∆t)xt,i +∆txt,i�1xt,i+1 −∆txt,i�2 + F∆t+
√
∆t · qt+1,i,

yt+1,i = xt+1,i +
√
∆t · ri,t+1,

(5)
for i = {1, . . . , Nx}, with qt ∼ N (0,Q), rt ∼ N (0,R)
I F = 8 (chaotic system)
I Nx = Ny = 20

I if d = 2, C has 4620 parameters
I if d = 3, C has 35420 parameters

I True graph vs GraphGrad estimation:

1

2

3

4

5
67

8

9

10

11

12

13

14

15
16 17

18

19

20

1

2

3

4

5
67

8

9

10

11

12

13

14

15
16 17

18

19

20

13E. N. Lorenz. “Predictability: A problem partly solved”. In: Proc. Seminar on
predictability. Vol. 1. 1. Reading. 1996.
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Ongoing extensions: beyond Markovianity
I Non-Markovian LG-SSM:14

I Unobserved state → xt =
PP

i=1 Aixt�i + qt
I Observations → yt = Htxt + rt

I Standard filtering and smoothing approach with known {Ai}
P
i=1

I stacking (columnwise) the p consecutive states into
zt = [xt;xt�1; . . . ;xt�p+1] ∈ R

pNx

I run KF and RTS in the extended model
(

zt = Ǎzt�1 + q̌t,

yt = Ȟzt + rt,
(6)

where we define

Ǎ =

2

6

6

6

4

A1 · · · · · · Ap

I 0 · · · 0
. . .

. . .
...

(0) I 0

3

7

7

7

5

∈ R
pNxåpNx ,

Ȟ = [H (0)] ∈ R
NyåpNx , Q̌ =

ÿ

Q (0)
(0) (0)

�

∈ R
pNxåpNx ,

q̌t ∼ N (0, Q̌), and rt ∼ N (0,R)
14E. Chouzenoux and V. Elvira. “Graphical Inference in Non-Markovian Linear-Gaussian

State-space Models"”. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2024, pp. 1–5.
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Beyond Markovianity

A1 =

0

@

0.9 0.7 0
0 0 −0.3
0 0 0

1

A, A2 =

0

@

0 0 0
0 0 0
0 0.8 0

1

A.

1

2

3

A1(1, 2)

A2(3, 2) A1(2, 3)

A1(1, 1)

xk−2(1)

xk−2(2)

xk−2(3)

xk−1(1)

xk−1(2)

xk−1(3)

xk(1)

xk(2)

xk(3)
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Ongoing extensions: beyond Markovianity
I LaGrangEM (ICASSP 2024): learn Ǎ non-Markovian models including

desirable properties and interpretability, e.g.,
I acyclic graph
I sparsity
I only one-lag interaction at maximum betwen nodes (more sparsity!)

I reasonable in some physical models
I one input arrow at maximum at each node (even more sparsity!)

I strong connection with modern Granger causality models15

I So far, great results but with intermediate/post-processing mapping steps
which may compromise the theoretical guarantees (?)
I ongoing work in bridging the gap between well-perorming methods and solid

theory
15D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. “Hierarchical

algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: IEEE
journal of biomedical and health informatics 23.1 (2018), pp. 143–155.

State-space models as graphs Víctor Elvira University of Edinburgh 36/44



Outline

Dynamical systems and state-space models (SSMs)

A doubly graphical perspective on SSMs

Estimation of A and Q

Beyond linearity

Beyond Markovianity

Beyond point-wise estimation

Conclusion



SpaRJ algorithm

I SpaRJ16 (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1:T ).

I The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
I Mn ∈ {0, 1}NxåNx : sparsity pattern sample
I An: matrix A sample, with non-zero elements, A(i, j) for

{(i, j) : Mn(i, j) = 1}

I We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1:T ).
17

I MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |Mn|.

I It requires to define:
I transition kernels for the model jumps
I mechanism to set values when jumping to a more complex model.

16B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922–1937.

17P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711–732.
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Pseudocode of SpaRJ

Input: Known SSM parameters {x̄0,P0,Q,R,H}, observations {yt}Tt=1,
hyper-parameters, number of iterations N , initial value A0

Output: Set of sparse samples {An}Nn=1

Initialization
Initialize M0 as fully dense (all ones) and A0

Run Kf obtaining l0 := log(p(y1:T |A0))p(A0)
for n = 1, ..., N do

Step 1: Propose model
Propose a new sparsity pattern M 0, obtaining a symmetry correction of c.
Step 2: Propose A0

Propose A0 using an MCMC sampler conditional on M 0

Step 3: MH accept-reject
Evaluate Kalman filter with A := A0

Set l0 := log(p(y1:T |A0))p(A0)
Compute log(ar) := l0 − ln�1 + c and Accept w.p. ar:
if Accept then

Set Mn := M 0, An := A0, ln := log(p(y1:T |A0))p(A0)
else

Set Mn := Mn�1,An := An�1, ln := ln�1

end if
end for
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Propose a new sparsity pattern M 0, obtaining a symmetry correction of c.
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Propose A0 using an MCMC sampler conditional on M 0
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Convergence of SpaRJ and GraphEM with data

Figure: 3× 3 system with known isotropic state covariance.
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Convergence of SpaRJ with iterations

Figure: Progression of sample metrics in a 12× 12.
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SpaRJ with real world data

London

Paris

Melbourne

Rome

Houston

Rio

Figure: Average daily temperature of 324 cities from 1995 to 2021, curated by the
United States Environmental Protection Agency.
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Conclusion

I SSMs are very powerful tools but still underdeveloped due to conceptual
and computational limiations.

I Novel graphical interpretation on matrices A and Q in LG-SSMs.
I Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ

(fully Bayesian).
I GraphEM is faster and allows explicit penalty functions (prior knowledge)

beyond sparsity.
I SpaRJ provides samples of the posterior allowing for uncertainty

quantification.

I Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)

I All have solid theoretical guarantees and show good performance.
I Current efforts to go beyond Markovianity, linearity, Gaussianity and more

uncertainty quantification.
I This is a challenging problem with many exciting ongoing methodological

and applied avenues ahead!
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Thank you for your attention!

GraphEM (learn A in LG-SSMs): V. Elvira, É. Chouzenoux, “Graphical Inference in
Linear-Gaussian State-Space Models”, IEEE Transactions on Signal Processing, Vol.
70, pp. 4757-4771, 2022.

DGLASSO (learn A and Q in LG-SSMs): E. Chouzenoux and V. Elvira, “Sparse
Graphical Linear Dynamical Systems, Journal of Machine Learning Research, Vol. 25,
No. 223, pp. 1-53, 2024

GraphGrad (learn C in non-linear SSMs): B. Cox, É. Chouzenoux, V. Elvira,
“GraphGrad: Efficient Estimation of Sparse Polynomial Representations for General
State-Space Models”, arxiv:2411.15637, 2024.

SpaRJ (probabilistic learning of A in LG-SSMs): B. Cox and V. Elvira, “Sparse
Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models”, IEEE
Transactions on Signal Processing, vol. 71, pp. 1922-1937, 2023.

GraphIT (better sparsity in A in LG-SSMs): E. Chouzenoux and V. Elvira, “Iterative
reweighted `1 algorithm for sparse graph inference in state-space models”, IEEE
International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2023),
Rhodes, Greece, June, 2023.

Non-LaGrangEM (learn A in non-Markovian LG-SSMs): E. Chouzenoux and V.
Elvira, “Graphical Inference in Non-Markovian Linear-Gaussian State-space Models”,
IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2024),
Seoul, Korea, April, 2024.
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