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Stein discrepancies are useful addition to the statistical and computational toolkit:

Posterior Approximation Intractable Likelihood
arg min Dp(7r) arg min Dp, (P»)
T 4

» thinning MCMC output [Riabiz et al., 2022] > goodness-of-fit testing [Liu et al., 2016,
> importance sampling [Liu and Lee, 2017, Chwialkowski et al., 2016]

Hodgkinson et al., 2020] > parameter estimation [Barp et al., 2019,
> variational inference [Ranganath et al., 2016, Matsubara et al., 2022]

Fisher et al., 2021] > ...
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Stein Importance Sampling
1. Generate (x1,...,xn) ~ P.
2. Compute optimal weights
w* € argmin {Dp (27:1 W,-5(x,-)) 0<w, w'l= 1} .

3. Return the approximation P; = >"7 | w;i6(x;).

Properties:
2
» Consistency Dp(P;) Do [Hodgkinson et al., 2020] and strong consistency Dp(P;) 23 0 [Riabiz
et al., 2022] when P is M-invariant MCMC with N =~ P.

> Remarkable empirical performance on sufficiently nice P (see next slide).

Questions:
» How to select P?

» | cannot access gradients of P, is this a problem?
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Figure: A 20-dimensional Gaussian target, with (biased) samples generated from the tamed unadjusted Langevin
algorithm (TULA). Reproduced from Hodgkinson et al. [2020].



Stein -Importance Sampling

Congye Wang Wilson Chen Heishiro Kanagawa

Newcastle University University of Sydney Newcastle University



Kernel Stein Discrepancies

For a symmetric positive definite function k : RY x RY — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y|*)~*/?)
(e Do, wik(-,xi) € H(k))



Kernel Stein Discrepancies

For a symmetric positive definite function k : RY x RY — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y|*)~*/?)

(e.g- D21, wik(-, ) € H(K))
Let P(R?) be the set of P € P(R?) for which H(k) C L*(P).



Kernel Stein Discrepancies

For a symmetric positive definite function k : RY x RY — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y|*)~*/?)

(e.g- D21, wik(-, ) € H(K))
Let P(R?) be the set of P € P(R?) for which H(k) C L*(P).

The kernel mean embedding is the map
1 Pe(RY) — H(k)
P s () = /k(~7x) dP(x)



Kernel Stein Discrepancies

For a symmetric positive definite function k : RY x RY — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y||?)~Y/?)

(e.g- D21, wik(-, ) € H(K))
Let P(R?) be the set of P € P(R?) for which H(k) C L*(P).

The kernel mean embedding is the map
1 Pe(RY) — H(k)
P s () = /k(~7x) dP(x)

A kernel is called a Stein (reproducing) kernel for P if up = 0, and write k = kp to emphasise that.



Kernel Stein Discrepancies

For a symmetric positive definite function k : RY x RY — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y|*)~*/?)

(e.g- D21, wik(-, ) € H(K))
Let P(R?) be the set of P € P(R?) for which H(k) C L*(P).

The kernel mean embedding is the map
1 Pe(RY) — H(k)
P o) i= [ k(2 dP)
A kernel is called a Stein (reproducing) kernel for P if up = 0, and write k = kp to emphasise that.
Definition (Kernel Stein Discrepancy)
Let kp be a Stein kernel for P € P(RY). The associated kernel Stein discrepancy (KSD) is
Dp(Q) = [[p(Q)l7(ke)

for Q € Pi.(RY).



Kernel Stein Discrepancies

For a symmetric positive definite function k : R? x R? — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y||*)~%/?)
(e 200 wik(-, ) € H(K))
Let Px(R?) be the set of P € P(R?) for which H(k) C L*(P).

The kernel mean embedding is the map
1 Pe(RY) — H(k)
P pup(:) = /k(-,x) dP(x)
A kernel is called a Stein (reproducing) kernel for P if yup = 0, and write k = kp to emphasise that.

Definition (Kernel Stein Discrepancy)
Let kp be a Stein kernel for P € P(R9). The associated kernel Stein discrepancy (KSD) is

DA(Q) = [11P(Q) ¢gery = sup{ [ 4@ bl < 1}

for Q € Pkp(Rd).
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For a symmetric positive definite function k : R? x R? — R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x,y) = (1 + ||x — y||»)~*/?)

(e.g- i, wik(- ) € H(k))
Let Px(R?) be the set of P € P(R?) for which H(k) C L*(P).

The kernel mean embedding is the map
1 Pe(RY) — H(k)
P pup(:) = /k(-,x) dP(x)
A kernel is called a Stein (reproducing) kernel for P if yup = 0, and write k = kp to emphasise that.

Definition (Kernel Stein Discrepancy)
Let kp be a Stein kernel for P € P(R9). The associated kernel Stein discrepancy (KSD) is
1/2

D(Q) = e (@t =0 { [ 1@ Wiy <1} = ( [[ kot d@1a00)

for @ € Pk, (RY). Computationally convenient.
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A Novel Approach to Selecting I
Problem: The components of w* are strongly inter-dependent.
Solution: Consider weights that are near-optimal and whose components are only weakly dependent.

Self-normalised importance sampling (SNIS) is the approximation

P,,:Z:W,'(S(X,')7 w; X %(Xi), X1,~~7an’ﬂ")r|

satisfies w > 0 and 1T w = 1, so that Dp(P}) < Dp(P,).
The asymptotic behaviour of SNIS can be characterised:

\%Zf 1%(Xf)kp('7xi) i)./\/(O,Cn)

; n::\[ ik 5 Xi) =
H(k) ¢ ”;W P() Z, ldrl(X’)

where Cn : H(kp) — H(kp) is the covariance operator defined via

(r.copm = [ (£ Gr0w0) (8 Gh0ket0)  dne

Dp(Pa) =
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Idea: Select I such that tr(Cp) is minimised.

The variational problem
. dP,
arg mintr(Cn), tr(Cn) = ﬁ(x) kp(x,x) dMN(x)
n

has solution (dM/dP)(x) o< v/ ke(x, x). I can also be sampled using MCMC

Thus M is adapted to the Stein kernel / KSD:

II (Langevin) II (Riemann)

2 0 2 T 0 2 2 0 2

Figure: lllustrating our choice of 1 in 2D.
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Figure: The mean kernel Stein discrepancy (KSD) for computation performed using the Langevin—Stein kernel

(purple), the KGM3-Stein kernel (blue), and the Riemann—Stein kernel (red); in each case, KSD was computed
using the same Stein kernel used to construct 1.
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Theoretical Guarantees

Question: Is Stein MN-Importance Sampling consistent?

Idea: Leverage the analysis of SIIS in Riabiz et al. [2022] and the explicit conditions for ergodicity of
MALA in Durmus and Moulines [2022].

Theorem (Strong consistency of SMIS-MALA)

Assume that

1. Vlogp € C*(RY) with sup,cpd ||V log p(x)|| < oo (bounded second derivative)
2. —V2log p(x) = b1l for all ||x|| > B: (sub-Gaussian tail)
3. infx kp(x,x) > 0, [ /kp(x,x) dP(x) < oo, kp € C*(RY) (embeddability)
4. Vixkp(x,x) = bal for all ||x|| > B> (sub-quadratic growth of Stein kernel)

Then there exists eo > 0 such that, for all step sizes € € (0,¢eo) and all initial states xo € R?
Dp(Py) %30

as n — o0.



Performance Assessment with PosteriorDB and BridgeStan

Langevin Kernel Stein Discrepancy KGM3 Kernel Stein Discrepancy
SIS 1S SIS SnIs

Task d || MALA T \iara MALA || MARA T iara MALA
earnings-earn_height 3 1.41 0.0674 0.0332 5.33 0.656 0.181
gp_pois_regr-gp_regr 3 0.208 0.0436 0.0373 1.22 0.385 0.223
kidig-kidscore_momhs 3 1.04 0.109 0.0941 4.66 0.848 0.476
kidig-kidscore_momiq 3 5.03 0.516 0.358 253 4.86 1.55
mesquite-logmesquite_logvolume 3 1.10 0.179 0.156 4.97 1.70 0.844
arma-armall 4 4.47 1.09 1.01 26.0 8.91 6.03
earnings-logearn_logheight_male 4 9.46 1.96 1.59 53.9 15.4 8.65
garch-garchl1l 4 0.543 0.159 0.130 4.70 1.16 1.01
kidig-kidscore_momhsiq 4 5.21 0.982 0.897 203 7.25 5.05
earnings-logearn_interaction_z 5 3.09 1.36 1.33 19.3 10.4 8.94
kidig-kidscore_interaction 5 7.74 1.65 1.79 47.8 13.2 10.1
kidig-with_-mom_work-kidscore_interaction_c 5 1.35 0.659 0.711 7.92 4.05 417
kidig-with_-mom_work-kidscore_interaction_c2 5 1.38 0.689 0.699 8.09 4.24 4.25
kidig-with_mom_work-kidscore_interaction_z 5 1.11 0.500 0.499 6.62 2.63 3.25
kidig-with_mom_work-kidscore_mom_work 5 1.07 0.507 0.545 6.70 2.63 3.04
low_dim_gauss_mix-low_dim_gauss_mix 5 5.51 1.87 1.76 375 14.7 11.3
mesquite-logmesquite_logva 5 1.83 0.821 0.818 12.6 5.73 5.59
hmm_example-hmm_example 6 1.99 0.578 0.523 11.6 4.13 3.40
sblre-blr 6 479 154 134 3300 1100 854
sblri-blr 6 201 66.7 60.3 1340 514 595
arK-arkK 7 6.87 3.39 3.16 60.4 26.4 23.0
mesquite-logmesquite_logvash 7 1.80 1.18 1.23 15.5 8.88 10.1
bball_drive_event_0-hmm_drive_0 8 1.15 0.679 0.698 8.55 4.72 3.99
bball_drive_event_1-hmm_drive_1 8 42.9 11.9 12.4 285 85.6 67.8
hudson_lynx_hare-lotka_volterra 8 4.62 2.29 2.15 47.4 18.8 18.9
mesquite-logmesquite 8 1.46 1.00 1.06 133 8.28 9.14
mesquite-logmesquite_logvas 8 2.02 131 135 192 10.8 122
mesquite-mesquite 8 0.429 0.268 0.235 371 217 2.42
eight_schools-eight_schools_centered 10 0.526 0.100 0.182 7.53 2.15 215
eight_schools-eight_schools_noncentered 10 0.210 0.137 0.137 43.6 28.7 27.5
nes1972-nes 10 6.16 3.89 3.45 729 36.2 34.4
nes1976-nes 10 6.67 3.86 3.53 775 355 34.4
nes1980-nes 10 4.34 2.68 2.57 49.8 25.4 25.7
nes1984-nes 10 6.18 3.75 3.43 713 34.9 33.6
nes1988-nes 10 7.40 3.70 3.27 81.4 34.6 324
nes1992-nes 10 7.52 4.32 3.84 89.1 39.7 37.3
nes1996-nes 10 6.44 3.87 3.53 74.1 36.4 343
nes2000-nes 10 3.35 2.22 2.20 38.6 213 228
diamonds-diamonds 26 196 157 143 5120 2990 2620
meycle_gp-accel_gp 66 113 8.25 9.79 960 623 815




Performance Assessment with PosteriorDB and BridgeStan

Langevin Kernel Stein Discrepancy KGM3 Kernel Stein Discrepancy
SIS S STS STITS
Task GO MARA | vana | omaca || MARA | vara | -maLa
carnings-earn_height 3 Ta1 0.0674 0.0332 533 0656 0.181
gp-pois._regr-gp_regr 3 0.208 0.0436 0.0373 1.22 0.385 0.223
Kidiq-kidscore_momhs 3 1.04 0.109 0.0941 4.66 0.848 0.476
kidiq-kidscore_momiq 3 5.03 0516 0.358 253 4.86 1.55
mesquite-logmesquite_logvolume 3 110 0179 0.156 497 170 0.844
arma-armall 4 4.47 1.09 1.01 26.0 8.91 6.03
carnings-logearn_logheight_male 4 9.46 1.96 1.50 53.9 15.4 8.65
garch-garch11 4 0.543 0.159 0.130 4.70 116 101
kidiq-kidscore_momhsiq 4 5.21 0.982 0.897 293 7.25 5.05
earnings-logearn interaction_z 5 3.00 1.36 133 193 104 8.04
Kidiq-kidscore.interaction 5 7.74 1.65 179 478 132 10.1
Kidiq_with-mom_work-kidscore_interactionc | 5 1.35 0.659 0.711 7.92 4.05 417
Kidiq_with-mom_work-kidscore_interactionc2 | 5 1.38 0.689 0.699 8.09 424 425
Kidiq_with-mom_work-kidscore_interactionz | 5 111 0.500 0.499 6.62 2.63 3.25
Kidiq_with_mom_work-kidscore_mom_work 5 1.07 0.507 0.545 6.70 2.63 3.04
low_dim_gauss_mix-low_dim_gauss_mix 5 551 187 1.76 375 147 113
mesquite-logmesquite_logva 5 1.83 0.821 0.818 126 5.73 5.59
hmm_example-hmm _example 6 1.99 0578 0523 116 413 3.40
sbirc-blr 6 479 154 134 3300 1100 854
sblri-blr 6 201 66.7 60.3 1340 514 505
ark-ark 7 6.87 339 3.16 60.4 26.4 23.0
mesquite-logmesquite_logvash 7 1.89 1.18 123 155 8.88 10.1
bball_drive_event_0-hmm_drive 0 8 115 0.679 0.698 8.55 472 3.99
bball_drive_event_L-hmm_drive_1 8 429 119 124 285 85.6 67.8
hudson_lynx_hare-lotka_volterra 8 462 2.29 215 474 18.8 18.9
mesquite-logmesquite 8 1.46 1.00 1.06 133 8.28 9.14
mesquite-logmesquite_logvas 8 2.02 131 1.35 19.2 108 122
mesquite-mesquite 8 0.429 0.268 0235 371 217 242
eight_schools-eight_schools_centered 10 0526 0.100 0182 753 215 215
eight_schools-eight_schools_noncentered 10 0210 0137 0.137 436 287 275
nes1972-nes 10 6.16 3.89 3.45 72.9 36.2 34.4
nes1976-nes 10 6.67 3.86 353 775 355 34.4
nes1980-nes 10 434 2.68 257 4938 25.4 257
nes1984-nes 10 6.18 3.75 3.43 713 349 336
nes1988-nes 10 7.40 3.70 327 81.4 346 324
nes1992-nes 10 7.52 432 3.84 89.1 397 37.3
nes1996-nes 10 6.44 3.87 3.53 74.1 36.4 343 Im provement on & 70% of
nes2000-nes 10 335 2.22 220 386 213 2238
diamonds-diamonds 26 196 157 143 5120 2000 2620 tasks in PosteriorDB
meycle gp-accel_gp 66 113 8.25 9.79 960 623 815
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H(kp) = Sp[H(k) x --- x H(K)],  Sph:= ;v - (ph).

It is a popular choice since it

» does not require the normalisation constant of P

» has weak convergence control: Dp(Q,) — 0 implies Q, 4p [Gorham and Mackey, 2017]

However, all existing Stein kernels require that the gradient V log p
» exists, and

» can be efficiently computed.

Question: Can we construct a Stein kernel without taking a gradient?
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Our starting point is a gradient-free Stein operator, introduced in Han and Liu [2018] in the context of
Stein variational gradient descent [Liu and Wang, 2016]:

Definition (Gradient-Free Stein Operator)
For P, Q@ € P(R?) with Q < P and V log q well-defined, the gradient-free Stein operator is defined as

Sp,qh ::%(V-h—i—h-Vlogq),

acting on differentiable functions h : RY — RY.

Remarks:
> [Sp.qgh dP = 0 for suitably ‘nice’ h : R — R ([ Sp,qh dP = [ Soh dQ)
» if Q # P, the dependence on the derivatives of p is removed
» @ is an additional degree of freedom - this can be good and bad
» the canonical (or Langevin) Stein operator is recovered when P = Q

Now to create a discrepancy ...
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Definition (Gradient-Free Kernel Stein Discrepancy)

For m € P(RY), the gradient-free kernel Stein discrepancy is defined as

1/2
Deo(m) = ( [ kealxy) dn(x)dn(n)
where the gradient-free Stein kernel kp,q is defined as H(kp,q) = Sp,o[H (k) % --- x H(k)].
This is well-defined if there is an o > 1 such that
> [(g/p)* dm < oo and

> [||Vlog ql|*/V dr < o0,

which are quite trivial when 7 is finitely supported. Call these “weak regularity conditions” (WRC).

GF-KSD is computable up to proportionality when p has an intractable normalising constant (like
KSD).

But is this a useful discrepancy?
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distance as
Wi(m, P;g):= sup /fg dﬂ—/fg dPl

Lip(f)<1

whenever this expression is well-defined.

Theorem (GF-KSD Detects Convergence)

Let P, Q € P(RY) with Q < P, Vlogq Lipschitz and [ ||V log q||* dQ < oo.
Assume the sequence (m,)nen C P(R?) satisfies WRC.

Then
W1(7Tn,P; q/p)—>0 = DP’Q(T(")—>0.
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Theoretical Justification for GF-KSD

Main condition on g: Let Q(]Rd) denote the set of probability distributions with positive density
function g : R? — (0, o) for which V log q is Lipschitz and q is strongly log-concave outside (and on
the boundary of) a compact set.

(implies Q-invariant overdamped Langevin mixes fast)

Theorem (GF-KSD Controls Convergence)

Let P € P(RY), @ € Q(RY) be such that p is continuous and inf,crs q(x)/p(x) > 0.
Assume the sequence (mn)nen C P(RY) satisfies WRC.

Then
Dpo(m) =0 = m, < p.

The proof is based on re-casting GF-KSD as standard KSD between @ and a transformed distribution
7, then appealing to the analysis of Gorham and Mackey [2017].



Selecting g in GF-KSD

Outward Convergence

Outward Non-Convergence

Inward Convergence

Inward Non-Convergence

Oblique Convergence




Selecting g in GF-KSD

Outward Convergence  Outward Non-Convergence 8 g ="Prior g=Laplace
6 -p
-q
A 4
g 2 |
& 0
]
20
) )
Inward Convergence Inward Non-Convergence
3 q¢=GMM q=KDE
6 -Pp -p
-q -q
4
Oblique Convergence a 2
M
& 0 =
) ——
o0 —2
L
-4
-6
-8

0O 20 40 60 8 100 O 20 40 60 80 100

n n



Selecting g in GF-KSD

Outward Convergence  Outward Non-Convergence 8 g ="Prior g=Laplace
6 -p
-q
A 4
g 2 |
& 0
]
20
) )
Inward Convergence Inward Non-Convergence
3 q¢=GMM q=KDE
6 - 4
-q -q
4
Oblique Convergence a 2
M
& 0 =
) ——
o0 —2
L
-4
-6
-8

0O 20 40 60 8 100 O 20 40 60 80 100

n n

Selecting g will ultimately be task-specific; we start with Laplace and then go beyond...
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Application #1: Gradient-Free Stein Importance Sampling

To date, applications of Stein importance sampling have been limited to instances where the statistical
model p can be differentiated; our contribution is to remove this requirement.

Theorem (Gradient-Free Stein Importance Sampling)

Let P € P(R?), Q@ € Q(R?), p continuous, inf q/p > 0, and [ exp{~||V log q*} d@ < .
Let (xn)nen be independent samples from Q.
To the sample, assign optimal weights
w* € argmin {DPVQ (27:1 W,-5(x,-)) 0<w, w'l= 1} .
Then

n

d
E w§(x) = P a.s. as n — co.
i=1
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KSD is an appealing alternative to KLD for VI because it does not require the variational family to be
absolutely continuous with respect to P, unlike KLD.

However, KSD requires second-order gradients of p to be computed [Fisher et al., 2021]; our
contribution is to remove this requirement.

An interesting methodological extension is to take @ = Py, to be the ‘current approximation’ to p
along the stochastic optimisation path.

GF-KSD 0 iterations GF-KSD 2000 iterations GF-KSD 10,000 iterations ~ GF-KSD 20,000 iterations KSD 20,000 iterations
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Stein discrepancies have given rise to a new generation of computational methods!

This raises many interesting research questions:
» explore the interplay between the choice of Stein discrepancy and the sampling method
» identify when one of the failure modes of KSD / GF-KSD has occurred

> extend to spaces other than RY

Full details are contained in the preprints

Wang C, Chen WY, Kanagawa H, CJO. Stein N-Importance Sampling, arXiv:2305.10068

Fisher MA and CJO. Gradient-Free Kernel Stein Discrepancy, arXiv:2207.02636

Thank you for your attention!
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