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Overview



Subsurface oil/gas reservoir 



Subsurface flow
A simple 2D model for subsurface flow is a diffusion equation

• k, the hydraulic conductivity of the subsurface,

• g, source/sink terms,

• P, the resulting pressure filed of groundwater.

Lack of pressure data leads to uncertainty in the conductivity k.

           

−∇ .(k (x )∇ P( x))=g(x ), x∈D⊆R2



Data Assimilation
• Instead of a well-posed forward problem of finding pressure from 
certain permeability, we are faced with an ill-posed inverse problem 
of finding uncertain random variables from a few pressure 
measurements. This is an inverse problem of parameter identification.

• Uncertain parameters can be estimated by combining a solution of 
physical model with measurements by means of data assimilation.

          



Data Assimilation: MCMC
• The golden standard is Markov Chain Monte Carlo (MCMC).

• MCMC requires very large number of realisations of a model (samples 
/ensemble members), which is computationally unaffordable for high-
dimensional systems.

Brooks, S., Gelman, A., Jones, G. L. and Meng, X.-L., eds. (2011). Handbook 
of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL.



Data Assimilation: Ensemble Kalman Filter
• Ensemble Kalman Filter (EnKF) became a standard data assimilation 
method in inverse modeling.

• EnKF assumes Gaussian probabilities, which might not be always the 
case.

Evensen, G. (2006). Data Assimilation: The Ensemble Kalman Filter. Springer



Data Assimilation: TETPF
• We developed a Tempered Ensemble Transform Particle Filter 
(TETPF) that does not make such assumptions and applied it to 
inverse problems.

S.Ruchi & S.Dubinkina (2018) and S.Ruchi, S. Dubinkina & M. Iglesias 
(2018).

• It is based on a data assimilation method of S.Reich.

S. Reich & C. Cotter. (2015). Probabilistic forecasting and data assimilation, 
Cambridge University Press.



Tempering
● Instead of jumping directly from prior to posterior, a smooth 
transition among the distribution can lead to stabilization of 
weights.
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Mutation



TETPF-pCN



Test Case I: Gaussian probability

P (x1 ,0)=100 ;
P
dx (6 , x2)=0 ;

−k
P
dx (0 , x2)=500 ;

 P
dy (x1 ,6)=0

Assume a steady-state single-phase 2D model for subsurface flow 

• the physical domain, 

•

• boundary conditions,

           

−∇ .(k (x)∇ P (x ))=g (x) , x=(x1 , x2)∈D

D=[0,6 ]×[0,6 ]

g (x1 , x2)={
0 if 0<x2<4

137 if 4<x2<5
274 if 5< x2<6



Test Case I: Gaussian probability
ℓi( p)=
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• We consider smoothed point observation defined by 

 and define a forward map by   

• For this model we simply consider the parameter as natural logarithm 
of k, i.e.  

• We consider Gaussian distributed log permeability.

           

G (k )=(ℓ1( p) , ... ,ℓM (p))

u(x )=log k (x)



Test Case I: Gaussian probability

• EnKF gives more accurate estimations of the mean field than TETPF.

           



Test Case II: Bimodal probability

• We consider a channelized domain: a channel with different 
permeability is situated in the domain.

           



Test Case II: Bimodal probability
• This model consists of parameterization of permeability of the form

where 

• The geometry of the channel is parameterized by five parameters

 amplitude, frequency, angle, initial point, width. 

• The lower boundary of channel is; 

and the upper boundary is 

• the parameters of interest are comprised in 

           

k (x)=exp (u1(x))χDi
(x)+exp(u2(x))χD o

(x)

k1=exp(u1(x )); k2=exp(u2(x))

{d i }i=1
5 ;

x2=d1sin (d2 x1)+ tan(d3) x1+d 4

x2+d5.

u=(d1 , d2 , d3 , d 4 , d5 , u1 ,u2)



Test Case II: Bimodal probability



Conclusions
Accurate estimations can be obtained by

• EnKF, when everything is Gaussian;

• MCMC, when everything is low-dimensional.

• TETPF, when everything is high-dimensional and non-Gaussian.

           



Questions?
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