

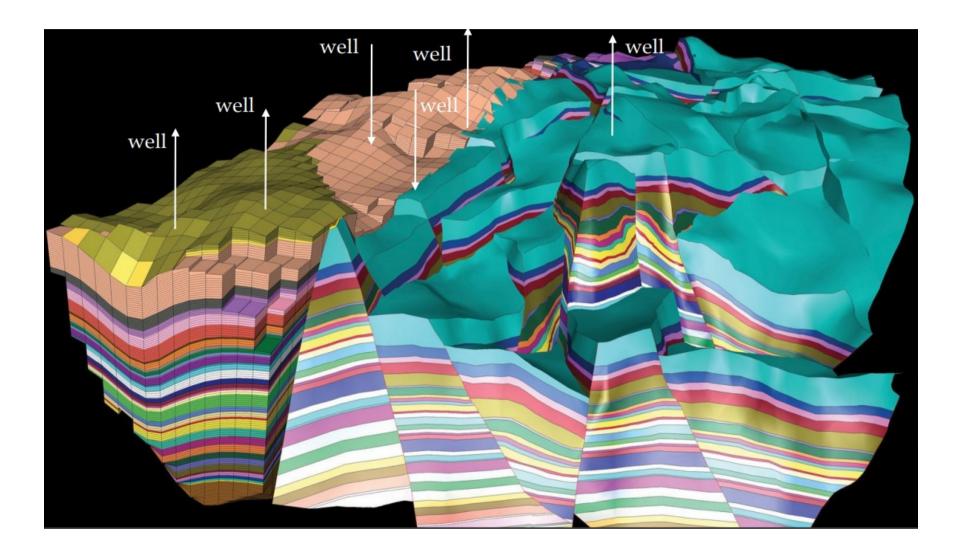
Transform-based Particle Filtering for elliptic Bayesian inverse problems

S.Ruchi⁺, S.Dubinkina⁺ and M. A. Iglesias^{*} ⁺CWI, Amsterdam, NL ^{*}University of Nottingham, Nottingham, UK

Overview

- Introduction to reservoir modeling
- Data assimilation
 - ► MCMC
 - Ensemble Kalman filters
 - Ensemble Transform Particle filter
- Test Cases Description and Results
- Conclusions

Subsurface oil/gas reservoir



Subsurface flow

A simple 2D model for subsurface flow is a diffusion equation

$$-\nabla .(k(x)\nabla P(x))=g(x), \qquad x\in D\subseteq R^2$$

- k, the hydraulic conductivity of the subsurface,
- g, source/sink terms,
- P, the resulting pressure filed of groundwater.

Lack of pressure data leads to uncertainty in the conductivity k.

Data Assimilation

• Instead of a well-posed forward problem of finding pressure from certain permeability, we are faced with an ill-posed inverse problem of finding uncertain random variables from a few pressure measurements. This is an inverse problem of parameter identification.

• Uncertain parameters can be estimated by combining a solution of physical model with measurements by means of data assimilation.

Data Assimilation: MCMC

- The golden standard is Markov Chain Monte Carlo (MCMC).
- MCMC requires very large number of realisations of a model (samples /ensemble members), which is computationally unaffordable for high-dimensional systems.

Brooks, S., Gelman, A., Jones, G. L. and Meng, X.-L., eds. (2011). Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL.

Data Assimilation: Ensemble Kalman Filter

• Ensemble Kalman Filter (EnKF) became a standard data assimilation method in inverse modeling.

• EnKF assumes Gaussian probabilities, which might not be always the case.

Evensen, G. (2006). Data Assimilation: The Ensemble Kalman Filter. Springer

Data Assimilation: TETPF

• We developed a Tempered Ensemble Transform Particle Filter (TETPF) that does not make such assumptions and applied it to inverse problems.

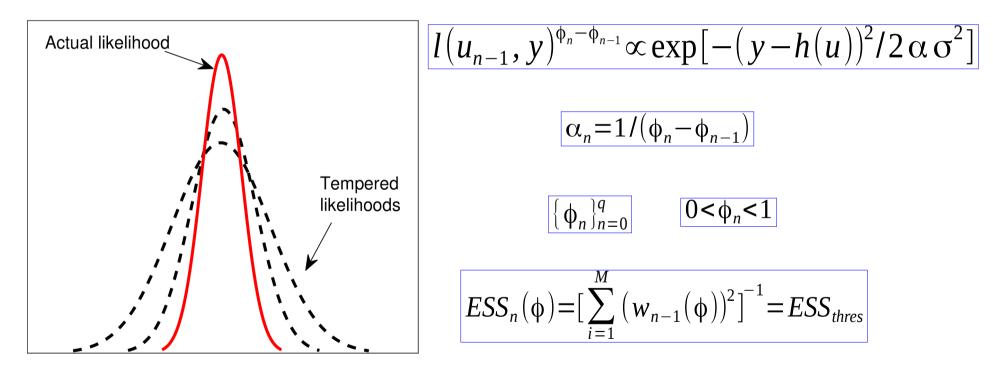
S.Ruchi & S.Dubinkina (2018) and S.Ruchi, S. Dubinkina & M. Iglesias (2018).

• It is based on a data assimilation method of S.Reich.

S. Reich & C. Cotter. (2015). Probabilistic forecasting and data assimilation, Cambridge University Press.

Tempering

• Instead of jumping directly from prior to posterior, a smooth transition among the distribution can lead to stabilization of weights.



Mutation

Select $\beta \in (0, 1)$ and an integer N_{μ} . for $j = 1, \ldots, J$ do Initialize $\nu^{(j)}(0) = \hat{u}_n^{(j)}$ while $\alpha \leq N_{\mu}$ do (1) pcN proposal. Propose u_{prop} from $u_{\text{prop}} = \sqrt{1 - \beta^2} \nu^{(j)}(\alpha) + (1 - \sqrt{1 - \beta^2})m + \beta\xi, \quad \text{with } \xi \sim N(0, C)$ (2) Set $\nu^{(j)}(\alpha+1) = u_{\text{prop}}$ with probability $a(\nu^{(j)}(\alpha), u)$ and $\nu^{(j)}(\alpha+1) = \nu^{(j)}(\alpha)$ with probability $1 - a(\nu^{(j)}(\alpha), u)$, where $a(u,v) = \min\left\{1, \frac{l(u,y)^{\phi_n}}{l(v,y)^{\phi_n}}\right\}$ (3) $\alpha \leftarrow \alpha + 1$ end while end for

TETPF-pCN

Let $\{u_0^{(j)}\}_{j=1}^J \sim \mu_0$ be the initial ensemble of J particles. Define the tunable parameters J_{thresh} and N_{μ} . Set n = 0 and $\phi_0 = 0$ while $\phi_n < 1$ do $n \rightarrow n+1$ **Compute the likelihood** $l(u_{n-1}^{(j)}, y)$ (for j = 1, ..., J) Compute the tempering parameter ϕ_n : if $\min_{\phi \in (\phi_{n-1},1)} \text{ESS}_n(\phi) > J_{\text{thresh}}$ then set $\phi_n = 1$. else compute ϕ_n such that $\text{ESS}_n(\phi) \approx J_{\text{thresh}}$ using a bisection algorithm on $(\phi_{n-1}, 1]$. end if **Computing weights** from expression $W_n^{(j)} \equiv W_{n-1}^{(j)}[\phi_n]$ **Resample based on optimal transport**. Compute $d_{ij} = ||u_{n-1}^{(i)} - u_{n-1}^{(j)}||^2$ (for $i, j = 1, \ldots, J$). Supply $\{d_{ij}\}_{i,j=1}^J$ and $\{W_n^{(j)}\}_{j=1}^J$ to the Earth's moving distances algorithm of Pele & Werman. The output is the coupling $\{T_{ij}^*\}_{i,j=1}^J$. Compute new samples $\hat{u}_n^{(j)}$ and set $W_n^{(j)} = \frac{1}{I}$.

Mutation. Sample $u_n^{(j)} \sim \mathcal{K}_n(\hat{u}_n^{(j)}, \cdot)$ end while

Approximate μ_n by $\mu_n^J \equiv \frac{1}{J} \sum_{j=1}^J \delta_{u_{n,r}^{(j)}}$

Test Case I: Gaussian probability

Assume a steady-state single-phase 2D model for subsurface flow

$$-\nabla \cdot (k(x)\nabla P(x)) = g(x), \qquad x = (x_1, x_2) \in D$$

• the physical domain, $D = [0,6] \times [0,6]$

•
$$g(x_1, x_2) = \begin{cases} 0 & \text{if } 0 < x_2 < 4 \\ 137 & \text{if } 4 < x_2 < 5 \\ 274 & \text{if } 5 < x_2 < 6 \end{cases}$$

• boundary conditions, $P(x_1, 0) = 100; \frac{\partial P}{\partial x}(6, x_2) = 0;$ $-k\frac{\partial P}{\partial x}(0, x_2) = 500; \frac{\partial P}{\partial y}(x_1, 6) = 0$

Test Case I: Gaussian probability

• We consider smoothed point observation defined by

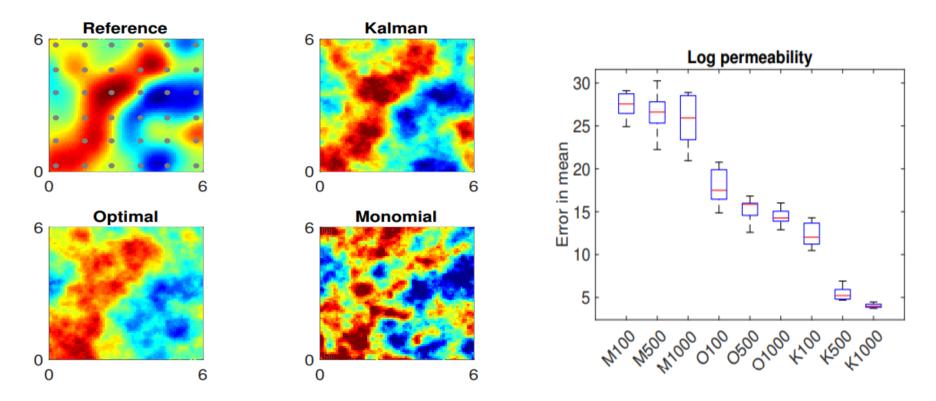
$$\ell_i(p) = \frac{1}{2\pi\varepsilon^2} \int_D \exp\left(\frac{-|x-x_j^2|}{2\varepsilon^2}\right) P(x) dx$$

and define a forward map by $G(k) = (\ell_1(p), ..., \ell_M(p))$

• For this model we simply consider the parameter as natural logarithm of k, i.e. $u(x) = \log k(x)$

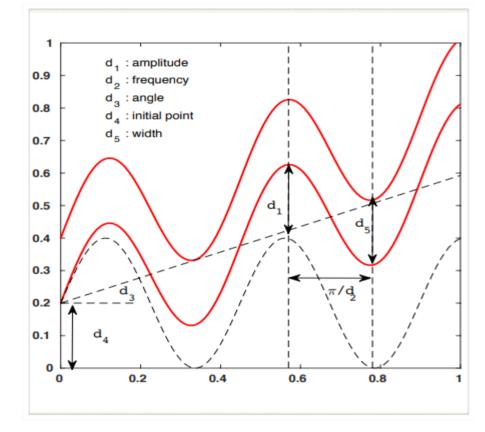
• We consider Gaussian distributed log permeability.

Test Case I: Gaussian probability



• EnKF gives more accurate estimations of the mean field than TETPF.

Test Case II: Bimodal probability



• We consider a channelized domain: a channel with different permeability is situated in the domain.

Test Case II: Bimodal probability

• This model consists of parameterization of permeability of the form

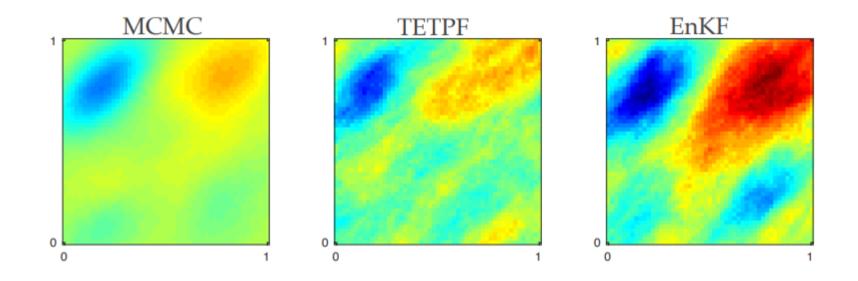
 $k(x) = \exp(u_1(x))\chi_{D_i}(x) + \exp(u_2(x))\chi_{D_o}(x)$

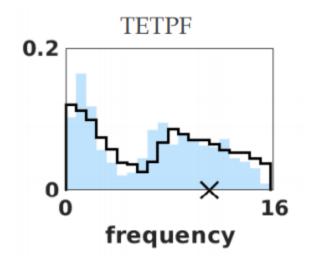
where $k_1 = \exp(u_1(x)); \quad k_2 = \exp(u_2(x))$

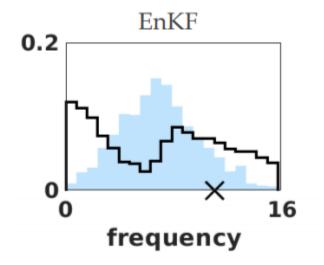
- The geometry of the channel is parameterized by five parameters $\{d_i\}_{i=1}^5$; amplitude, frequency, angle, initial point, width.
- The lower boundary of channel is; $x_2 = d_1 \sin(d_2 x_1) + \tan(d_3) x_1 + d_4$ and the upper boundary is $x_2 + d_5$.

• the parameters of interest are comprised in $u = (d_1, d_2, d_3, d_4, d_5, u_1, u_2)$

Test Case II: Bimodal probability







Conclusions

Accurate estimations can be obtained by

- EnKF, when everything is Gaussian;
- MCMC, when everything is low-dimensional.
- TETPF, when everything is high-dimensional and non-Gaussian.

