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Subsurface oil/gas reservoir




Subsurface flow
A simple 2D model for subsurface flow is a diffusion equation
-V.(k(x)VP(x))=g(x), ~ x€DSR’

* k, the hydraulic conductivity of the subsurface,
* g, source/sink terms,

* P, the resulting pressure filed of groundwater.

Lack of pressure data leads to uncertainty in the conductivity k.



Data Assimilation

* Instead of a well-posed forward problem of finding pressure from
certain permeability, we are faced with an ill-posed inverse problem
of finding wuncertain random variables from a few pressure
measurements. This is an inverse problem of parameter identification.

* Uncertain parameters can be estimated by combining a solution of
physical model with measurements by means of data assimilation.



Data Assimilation: MCMC

* The golden standard is Markov Chain Monte Carlo (MCMCQ).

* MCMC requires very large number of realisations of a model (samples
/ensemble members), which is computationally unaffordable for high-
dimensional systems.

Brooks, S., Gelman, A., Jones, G. L. and Meng, X.-L., eds. (2011). Handbook
of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL.



Data Assimilation: Ensemble Kalman Filter

°* Ensemble Kalman Filter (EnKF) became a standard data assimilation
method in inverse modeling.

* EnKF assumes Gaussian probabilities, which might not be always the
case.

Evensen, G. (2006). Data Assimilation: The Ensemble Kalman Filter. Springer



Data Assimilation: TETPF

We developed a Tempered Ensemble Transform Particle Filter
(TETPF) that does not make such assumptions and applied it to
inverse problems.

S.Ruchi & S.Dubinkina (2018) and S.Ruchi, S. Dubinkina & M. Iglesias
(2018).

* It is based on a data assimilation method of S.Reich.

S. Reich & C. Cotter. (2015). Probabilistic forecasting and data assimilation,
Cambridge University Press.



Tempering

* Instead of jumping directly from prior to posterior, a smooth
transition among the distribution can lead to stabilization of

weights.

Actual likelihood

Tempered
‘ likelihoods
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Mutation

Select 4 € (0,1) and an integer N,,.

Initialize ¥9)(0) = iy’
while a < N, do
(1) pcN proposal. Propose 1, from

Uprop = V1 = B (@) + (1 = /1 = B2)m + B¢, with & ~ N(0,C)
(2) Set V) (a+1) = g, with probability a(v¥)(a), u) and v (a+1) = ) (a)
with probability 1 — a(v\(a),u), where

' l(u,y)
o) = min 1 L0

(3)a+a+l
end while
end for




TETPF-pCN

Let {uy }}.}Li ~ j1p be the initial ensemble of J particles.
Define the tunable parameters Jipresn and N,.
Setn=0and ¢y =0
while ¢, <1 do
n—+n+l
Compute the likelihood (u?,,y) (for j=1,...,J)
Compute the tempering parameter ¢,,:
if minge(s, ,.1) ESS,(¢) > Jihresn then
set ¢, = 1.
else
compute ¢, such that ESS, (¢) = Jihresh
using a bisection algorithm on (¢,_,, 1].

end if
Computing weights from expression WY = WU ]1[{‘},,]
Resample based on optimal transport. Compute d;; = |[u”, — u || (for

i,j = 1,...,J). Supply {d;;};,_, and {H«”U]} _, to the Ea;rth s moving dlstances
algorithm of Pele & Werman. The output is the coupling {77;}; } -

Compute new samples i, Tl and set WY = lf
Mutation. Sample uy) ~ .-'Cn[ﬁff )
end while

Approximate p, by p! = j. 1:‘5 (4)
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Test Case I: Gaussian probability

Assume a steady-state single-phase 2D model for subsurface flow
~V.(k(x)VP(x))=g(x),  x=[x,x,)€D

* the physical domain, D=[0,6]%|0,6]

0 if O<x,<4
. g(x1,x,)=[137 if 4<x,<5
274 if 5<x,<6

oP
* boundary conditions, P(x:,0)=100;7—(6,x,)=0;

OP oP
—kcw(o X,)= soo,d (x,,6)=0



Test Case I: Gaussian probability

* We consider smoothed point observation defined by

fi(p):

—|x—x§|
2

P(x)dx

L[ ex
2n82D P 2¢

and define a forward map by G(k):<f1(P),---,fM(P)>

* For this model we simply consider the parameter as natural logarithm
of k, i.e. u(x):]ogk(x)

* We consider Gaussian distributed log permeability.



Test Case I: Gaussian probability
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* EnKF gives more accurate estimations of the mean field than TETPF.



Test Case llI: Bimodal probability
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* We consider a channelized domain: a channel with different
permeability is situated in the domain.



Test Case Il: Bimodal probability

* This model consists of parameterization of permeability of the form
k(x)=exp(u;(x))%p,(x)+exp(uy(x))xp, (x)

where k,=exp(u,(x)); k,=exp(u,(x))

* The geometry of the channel is parameterized by five parameters {d,}._,;

amplitude, frequency, angle, initial point, width.

* The lower boundary of channel is; x,=d,sin(d,x,)+tan(d,)x,+d,

and the upper boundary is x,+d:

* the parameters of interest are comprised in u=(d1,d2,d3,d 4,d5,u1,u2)



Test Case llI: Bimodal probability
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Conclusions

Accurate estimations can be obtained by
* EnKF, when everything is Gaussian;
* MCMC, when everything is low-dimensional.

* TETPF, when everything is high-dimensional and non-Gaussian.



Questions?
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