Probabilistic Linear Solvers

Jon Cockayne, Chris Oates, Ilse Ipsen, Mark Girolami June 21, 2019

We will construct probabilistic numerical methods for solving linear systems.

Solving Linear Systems

Goal: find x^* in

$$Ax^* = b$$

 $A \in \mathbb{R}^{d imes d}$ invertible (not necessarily SPD). $\pmb{x^*}, \pmb{b} \in \mathbb{R}^d.$

The First Algorithm Ever Implemented?

"Mallock Machine", capable of solving 6×6 linear systems.

- E.g. Cholesky factorisation:
 - 1. Compute $A = LL^{\top}$

- E.g. Cholesky factorisation:
 - 1. Compute $A = LL^{\top}$
 - 2. Solve Lz = b.

- E.g. Cholesky factorisation:
 - 1. Compute $A = LL^{\top}$
 - 2. Solve Lz = b.
 - 3. Solve $L^{\top} \boldsymbol{x} = \boldsymbol{z}$

- E.g. Cholesky factorisation:
 - 1. Compute $A = LL^{\top}$
 - 2. Solve $L \boldsymbol{z} = \boldsymbol{b}$.
 - 3. Solve $L^{\top} \boldsymbol{x} = \boldsymbol{z}$

(Naive) cost: $\mathcal{O}(d^3)$ computation, $\mathcal{O}(d^2)$ storage.

Iterative Methods aim to produce a sequence $(x_m) o x^*$ as $m o \infty.$

Iterative Methods aim to produce a sequence $(x_m) o x^*$ as $m o \infty.$

Often possible to elicit an iterative method that is faster than a direct method if we are willing to accept a small error in the result.

Iterative Methods aim to produce a sequence $(x_m) o x^*$ as $m o \infty$.

Often possible to elicit an iterative method that is faster than a direct method if we are willing to accept a small error in the result. Generally require some "initial guess" x_0 ; then

 $\boldsymbol{x}_m = P_m(\boldsymbol{x}_0; \boldsymbol{x}^*)$

A non-stationary, non-linear iterative method.

¹Hestenes and Stiefel [1952]

A non-stationary, non-linear iterative method.

Consider the functional:

$$f(\boldsymbol{x}) := \boldsymbol{x}^\top A \boldsymbol{x} - \boldsymbol{x}^\top \boldsymbol{b}$$

Has a unique minimum x^* .

¹Hestenes and Stiefel [1952]

A non-stationary, non-linear iterative method.

Consider the functional:

$$f(\boldsymbol{x}) := \boldsymbol{x}^\top A \boldsymbol{x} - \boldsymbol{x}^\top \boldsymbol{b}$$

Has a unique minimum x^* .

CG arises from performing modified gradient descent on this functional to find its minimum.

¹Hestenes and Stiefel [1952]

Raw gradient descent:

$$\boldsymbol{s}_m = \boldsymbol{b} - A\boldsymbol{x}_m = \boldsymbol{r}_m$$

CG search directions:

$$oldsymbol{s}_m = oldsymbol{r}_m - \langle oldsymbol{r}_m, oldsymbol{s}_{m-1}
angle_A \cdot oldsymbol{s}_{m-1}$$

Raw gradient descent:

$$\boldsymbol{s}_m = \boldsymbol{b} - A\boldsymbol{x}_m = \boldsymbol{r}_m$$

CG search directions:

$$oldsymbol{s}_m = oldsymbol{r}_m - \langle oldsymbol{r}_m, oldsymbol{s}_{m-1}
angle_A \cdot oldsymbol{s}_{m-1}$$

Produces a set of search directions that are *A*-orthonormal (after normalisation):

$$\langle \boldsymbol{s}_i, \boldsymbol{s}_j
angle_A = \delta_{ij}$$

\$\mathcal{O}\$(md^2)\$ computation (1 matrix-vector multiplication per-iteration).

- \$\mathcal{O}\$(md^2)\$ computation (1 matrix-vector multiplication per-iteration).
- *O*(*d*) storage (need to store 2-3 additional vectors).

Classical Theory

Introduce the Krylov Subspace:

$$K_m(A, \boldsymbol{b}) = \operatorname{span}(\boldsymbol{b}, A\boldsymbol{b}, \dots, A^{m-1}\boldsymbol{b})$$

Classical Theory

Introduce the Krylov Subspace:

$$K_m(A, \boldsymbol{b}) = \operatorname{span}(\boldsymbol{b}, A \boldsymbol{b}, \dots, A^{m-1} \boldsymbol{b})$$

Theorem (Krylov Subspace Method)

We have that

$$\boldsymbol{x}_m = \operatorname*{arg\,min}_{\boldsymbol{x} \in \boldsymbol{x}_0 + K_m(A, \boldsymbol{r}_0)} \| \boldsymbol{x} - \boldsymbol{x}^* \|_A$$

Classical Theory

Introduce the Krylov Subspace:

$$K_m(A, \boldsymbol{b}) = \operatorname{span}(\boldsymbol{b}, A\boldsymbol{b}, \dots, A^{m-1}\boldsymbol{b})$$

Theorem (Krylov Subspace Method)

We have that

$$\boldsymbol{x}_m = \operatorname*{arg\,min}_{\boldsymbol{x} \in \boldsymbol{x}_0 + K_m(A, \boldsymbol{r}_0)} \| \boldsymbol{x} - \boldsymbol{x}^* \|_A$$

Theorem (Convergence)

We have that

$$\frac{\|\boldsymbol{x}_m - \boldsymbol{x}^*\|_A}{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_A} \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^m$$

Probabilistic Numerical Methods

Numerical methods that return probability measures.

Numerical methods that return probability measures.

Those measures are designed to describe where the truth might lie given the computational effort expended.

Numerical methods that return probability measures.

Those measures are designed to describe where the truth might lie given the computational effort expended.

Methods are called Bayesian if the output is a posterior [Cockayne et al., 2019].

 Contemporary numerical problems involve composition of many base numerical methods into pipelines.

- Contemporary numerical problems involve composition of many base numerical methods into pipelines.
- BPNM can be straightforwardly composed under mild conditions Cockayne et al. [2019].

BayesCG

• Start with a Gaussian prior

 $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}_0, \Sigma_0)$

Probabilistic Linear Solvers

• Start with a Gaussian prior

$$\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}_0, \Sigma_0)$$

 Use the data provided by some set of search directions to construct the posterior:

$$\boldsymbol{s}_m^{\top} A \boldsymbol{x}^* = \boldsymbol{s}_m^{\top} \boldsymbol{b} := y_m$$

Probabilistic Linear Solvers

• Start with a Gaussian prior

$$\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}_0, \Sigma_0)$$

 Use the data provided by some set of search directions to construct the posterior:

$$\boldsymbol{s}_m^{\top} A \boldsymbol{x}^* = \boldsymbol{s}_m^{\top} \boldsymbol{b} := y_m$$

Let

$$S_m = \begin{pmatrix} s_1 & \cdots & s_m \end{pmatrix}$$

$$\begin{aligned} \boldsymbol{x} | \boldsymbol{y}_m &\sim \mathcal{N}(\boldsymbol{x}_m, \boldsymbol{\Sigma}_m) \\ \boldsymbol{x}_m &= \boldsymbol{x}_0 + \boldsymbol{\Sigma}_0 \boldsymbol{A}^\top \boldsymbol{S}_m \boldsymbol{\Lambda}_m^{-1} \boldsymbol{S}_m^\top (\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_0) \\ \boldsymbol{\Sigma}_m &= \boldsymbol{\Sigma}_0 - \boldsymbol{\Sigma}_0 \boldsymbol{A}^\top \boldsymbol{S}_m \boldsymbol{\Lambda}_m^{-1} \boldsymbol{S}_m^\top \boldsymbol{A} \boldsymbol{\Sigma}_0 \end{aligned}$$

$$\Lambda_m = S_m^\top A \Sigma_0 A^\top S_m$$

To compute the posterior we must invert

$$\Lambda_m = S_m^\top A \Sigma_0 A^\top S_m$$

To compute the posterior we must invert

$$\Lambda_m = S_m^\top A \Sigma_0 A^\top S_m$$

However

$$(\Lambda_m)_{ij} = \langle \boldsymbol{s}_i, \boldsymbol{s}_j \rangle_{A \Sigma_0 A^{\top}}$$

Choosing $A\Sigma_0 A^{\top}$ -orthonormal search directions makes this more practical.
Theorem (BayesCG)

Let

$$ilde{m{s}}_m = m{r}_{m-1} - \langle m{s}_{m-1}, m{r}_{m-1}
angle_{A \Sigma_0 A^ op} \cdot m{s}_{m-1}$$

Then after normalisation the directions s_1, \ldots, s_m are $A\Sigma_0 A^{\top}$ -orthonormal.

Theorem (BayesCG)

Let

$$ilde{m{s}}_m = m{r}_{m-1} - \langle m{s}_{m-1}, m{r}_{m-1}
angle_{A \Sigma_0 A^ op} \cdot m{s}_{m-1}$$

Then after normalisation the directions s_1, \ldots, s_m are $A\Sigma_0 A^{\top}$ -orthonormal.

Furthermore we have

$$\boldsymbol{x}_{m} = \boldsymbol{x}_{m-1} + \Sigma_{0} A^{\top} \boldsymbol{s}_{m} (\boldsymbol{s}_{m}^{\top} \boldsymbol{r}_{m-1})$$
$$\Sigma_{m} = \Sigma_{m-1} - \Sigma_{0} A^{\top} \boldsymbol{s}_{m} \boldsymbol{s}_{m}^{\top} A \Sigma_{0}$$

- \$\mathcal{O}\$ (md²) computation. (2-3 matrix-vector multiplications per-iter).
- $\mathcal{O}(md)$ storage (need to store search directions).

- \$\mathcal{O}\$ (md²) computation. (2-3 matrix-vector multiplications per-iter).
- $\mathcal{O}(md)$ storage (need to store search directions).

More costly than CG, but comes with UQ.

Theorem (Krylov Subspace Method)

Let

$$K_m^* = \boldsymbol{x}_0 + \Sigma_0 A^\top K_m (A \Sigma_0 A^\top, \boldsymbol{r}_0)$$

Theorem (Krylov Subspace Method)

Let

$$K_m^* = \boldsymbol{x}_0 + \Sigma_0 A^\top K_m (A \Sigma_0 A^\top, \boldsymbol{r}_0)$$

Then the BayesCG posterior mean satisfies

$$oldsymbol{x}_m = rgmin_{oldsymbol{x}\in K_m^*} \|oldsymbol{x}-oldsymbol{x}^*\|_{\Sigma_0^{-1}}$$

Theorem (Krylov Subspace Method)

Let

$$K_m^* = \boldsymbol{x}_0 + \Sigma_0 A^\top K_m (A \Sigma_0 A^\top, \boldsymbol{r}_0)$$

Then the BayesCG posterior mean satisfies

$$oldsymbol{x}_m = rgmin_{oldsymbol{x}\in K_m^*} \|oldsymbol{x}-oldsymbol{x}^*\|_{\Sigma_0^{-1}}$$

Note that $\Sigma_0 = A^{-1}$ replicates CG!

Theorem (Convergence Rate) $\frac{\|\boldsymbol{x}_m - \boldsymbol{x}^*\|_{\Sigma_0^{-1}}}{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_{\Sigma_0^{-1}}} \leq 2\left(\frac{\sqrt{\kappa(\Sigma_0 A^\top A)} - 1}{\sqrt{\kappa(\Sigma_0 A^\top A)} + 1}\right)^m$

Theorem (Convergence Rate)
$$\frac{\|\boldsymbol{x}_m - \boldsymbol{x}^*\|_{\Sigma_0^{-1}}}{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_{\Sigma_0^{-1}}} \leq 2\left(\frac{\sqrt{\kappa(\Sigma_0 A^\top A)} - 1}{\sqrt{\kappa(\Sigma_0 A^\top A)} + 1}\right)^m$$

Fastest convergence achieved when $\kappa(\Sigma_0 A^{\top} A) \approx 1$.

Experimental Results

• $\Sigma_0 = A^{-1}$: Replicates CG.

- $\Sigma_0 = A^{-1}$: Replicates CG.
- $\Sigma_0 = I$: "Uninformative".

- $\Sigma_0 = A^{-1}$: Replicates CG.
- $\Sigma_0 = I$: "Uninformative".
- A-Priori Optimal Directions: Essentially random.

- $\Sigma_0 = A^{-1}$: Replicates CG.
- $\Sigma_0 = I$: "Uninformative".
- A-Priori Optimal Directions: Essentially random.
- Preconditioner Prior: Given a preconditioner P for A, set $\Sigma_0 = (P^{\top}P)^{-1}$.

- A a random sparse matrix (drawn using the matlab function sprandsym).
- d = 100.
- Many test problems x^* are drawn from $\mathcal{N}(\mathbf{0}, I)$.
- BayesCG applied to m = 100.

Convergence of Posterior Mean

To assess the UQ we make the ansatz that if the posterior is "well-calibrated" then x^* should look like a draw from the posterior.

To assess the UQ we make the ansatz that if the posterior is "well-calibrated" then x^* should look like a draw from the posterior.

Then for the Z-statistic:

$$Z({oldsymbol x}^*):=\|{oldsymbol x}^*-{oldsymbol x}_m\|_{\Sigma_m^\dagger}^2$$

we can prove that under the ansatz:

$$Z(\boldsymbol{x}^*) \sim \chi^2_{d-m}$$

Assessment of Posterior UQ

$$S_m^{\top}(\boldsymbol{x}^*)A\boldsymbol{x} = S_m^{\top}(\boldsymbol{x}^*)A\boldsymbol{x}^*$$

Non-Bayesian Methods

Stationary Iterative Methods²

Iteration is of the form

$$P_m = \underbrace{P \circ \cdots \circ P}_{m \text{ times}}$$

i.e. each iteration is independent of all previous iterations.

Stationary Iterative Methods²

Iteration is of the form

$$P_m = \underbrace{P \circ \cdots \circ P}_{m \text{ times}}$$

i.e. each iteration is independent of all previous iterations.

In stationary iterative methods of first order:

$$P(\boldsymbol{x}) := G\boldsymbol{x} + \boldsymbol{f}$$
$$G \in \mathbb{R}^{d \times d}$$
$$\boldsymbol{f} \in \mathbb{R}^{d}$$

Iteration is of the form

$$P_m = \underbrace{P \circ \cdots \circ P}_{m \text{ times}}$$

i.e. each iteration is independent of all previous iterations.

In stationary iterative methods of first order:

$$P(\boldsymbol{x}) := G\boldsymbol{x} + \boldsymbol{f}$$
$$G \in \mathbb{R}^{d \times d}$$
$$\boldsymbol{f} \in \mathbb{R}^{d}$$

Examples: Jacobi iteration, Richardson iteration, ...

²Young [1971]

Stationary iterative methods do not obviously give rise to a Bayesian approach.

Stationary iterative methods do not obviously give rise to a Bayesian approach.

Bayesian methods are generally more expensive than classical methods (often much more).

For an iterative method P_m define the associated pushforward method:

$$\mu_m = (P_m)_{\#} \mu_0$$

where $P_{\#}\mu$ is defined as

$$[P_{\#}\mu](B) = \mu(P^{-1}B)$$

For an iterative method P_m define the associated pushforward method:

$$\mu_m = (P_m)_{\#} \mu_0$$

where $P_{\#}\mu$ is defined as

$$[P_{\#}\mu](B) = \mu(P^{-1}B)$$

Accessible via a simple sampling algorithm:

- 1. Draw $\pmb{x} \sim \mu_0$
- 2. Compute $P_m(\boldsymbol{x})$

Pushforward Stationary Iterative Methods

Theorem (Probabilistic Linear Stationary Iterative Method of First Degree)

Suppose $\mu_0 \sim \mathcal{N}(\textbf{\textit{x}}_0, \Sigma_0)$ and

$$P_m = \underbrace{P \circ \cdots \circ P}_{m \text{ times}}$$

with $P(\mathbf{x}) = G\mathbf{x} + f$. Then

$$\mu_m = \mathcal{N}(\boldsymbol{x}_m, \Sigma_m)$$
$$\boldsymbol{x}_m = G^m \boldsymbol{x}_0 + \sum_{i=1}^{m-1} G^{m-i} \boldsymbol{f}$$
$$\Sigma_m = G^m \Sigma_0 (G^m)^\top$$

But Why?

Assess these methods using the Z-statistic:

$$Z({oldsymbol x}^*) = \|{oldsymbol x}^* - {oldsymbol x}_m\|_{\Sigma_m^\dagger}^2$$

But Why?

Assess these methods using the *Z*-statistic:

$$Z(\boldsymbol{x}^*) = \| \boldsymbol{x}^* - \boldsymbol{x}_m \|_{\Sigma_m^\dagger}^2$$

Theorem

Suppose Σ_0 is full-rank and G is a diagonalisable matrix of rank r. Then rank $(\Sigma_m) = r$ and

$$Z(\boldsymbol{x}^*) \sim \chi_r^2.$$

But Why?

Assess these methods using the Z-statistic:

$$Z(\boldsymbol{x}^*) = \| \boldsymbol{x}^* - \boldsymbol{x}_m \|_{\Sigma_m^\dagger}^2$$

Theorem

Suppose Σ_0 is full-rank and G is a diagonalisable matrix of rank r. Then rank $(\Sigma_m) = r$ and

$$Z(\boldsymbol{x}^*) \sim \chi_r^2.$$

Thus these methods are automatically well-calibrated.

The S-statistic is defined as

$$S(\boldsymbol{x},\boldsymbol{x}') = \|\boldsymbol{x} - \boldsymbol{x}'\|_2.$$

The S-statistic is defined as

$$S(\boldsymbol{x},\boldsymbol{x}') = \|\boldsymbol{x} - \boldsymbol{x}'\|_2.$$

Let $X^* \sim \mu_{ref}$ and $X, X' \sim \mu_m$ i.i.d. Then we say μ_m is well-calibrated wrt μ_{ref} if

 $S(X, X') = S(X, X^*)$

Calibration of Pushforward CG

Conclusions
• Stability properties in finite-precision.

- Stability properties in finite-precision.
- Accelerating convergence while obtaining better UQ:
 - Further work on the Krylov prior.
 - "Pushforward" methods.

- Stability properties in finite-precision.
- Accelerating convergence while obtaining better UQ:
 - Further work on the Krylov prior.
 - "Pushforward" methods.

Discussion now open!

• Further theory - generalising "well-calibrated".

- Further theory generalising "well-calibrated".
- Applications to other methods than linear systems?
 - Optimizers?
 - Eigenproblems?
 - ...?

Questions?

References

- Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. Bayesian probabilistic numerical methods. SIAM Review, 2019. to appear.
- M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6):409, December 1952. doi: 10.6028/jres.049.044. URL https://doi.org/10.6028/jres.049.044.
- David M. Young. Iterative Solution of Large Linear Systems. Elsevier, 1971. doi: 10.1016/c2013-0-11733-3. URL https://doi.org/10.1016/c2013-0-11733-3.