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In This Talk…

We will construct probabilistic numerical methods for solving linear
systems.
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Solving Linear Systems



The Problem

Goal: find x∗ in
Ax∗ = b

A ∈ Rd×d invertible (not necessarily SPD).

x∗, b ∈ Rd.
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The First Algorithm Ever Implemented?

“Mallock Machine”, capable of solving 6 × 6 linear systems.
4



Direct Methods

Direct Methods aim to solve the system “in one shot”.

E.g. Cholesky factorisation:

1. Compute A = LL⊤

2. Solve Lz = b.
3. Solve L⊤x = z

(Naive) cost: O(d3) computation, O(d2) storage.
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Iterative Methods

Iterative Methods aim to produce a sequence (xm) → x∗ as
m → ∞.

Often possible to elicit an iterative method that is faster than a
direct method if we are willing to accept a small error in the result.

Generally require some “initial guess” x0; then

xm = Pm(x0;x∗)
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The Conjugate Gradient Method1

A non-stationary, non-linear iterative method.

Consider the functional:

f(x) := x⊤Ax − x⊤b

Has a unique minimum x∗.

CG arises from performing modified gradient descent on this
functional to find its minimum.

1Hestenes and Stiefel [1952]
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The Conjugate Gradient Method

Raw gradient descent:

sm = b − Axm = rm

CG search directions:

sm = rm − ⟨rm, sm−1⟩A · sm−1

Produces a set of search directions that are A-orthonormal (after
normalisation):

⟨si, sj⟩A = δij

8



The Conjugate Gradient Method

Raw gradient descent:

sm = b − Axm = rm

CG search directions:

sm = rm − ⟨rm, sm−1⟩A · sm−1

Produces a set of search directions that are A-orthonormal (after
normalisation):

⟨si, sj⟩A = δij

8



Computational Cost

• O(md2) computation (1 matrix-vector multiplication
per-iteration).

• O(d) storage (need to store 2-3 additional vectors).
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Classical Theory

Introduce the Krylov Subspace:

Km(A, b) = span(b,Ab, . . . ,Am−1b)

Theorem (Krylov Subspace Method)
We have that

xm = argmin
x∈x0+Km(A,r0)

∥x − x∗∥A

Theorem (Convergence)
We have that

∥xm − x∗∥A
∥x0 − x∗∥A

≤ 2
(√

κ(A)− 1√
κ(A) + 1

)m
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Probabilistic Numerical Methods



Probabilistic Numerical Methods

Numerical methods that return probability
measures.
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Numerical methods that return probability
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Those measures are designed to describe
where the truth might lie given the
computational effort expended.
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Probabilistic Numerical Methods

Numerical methods that return probability
measures.

Those measures are designed to describe
where the truth might lie given the
computational effort expended.

Methods are called Bayesian if the output is
a posterior [Cockayne et al., 2019].
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Why Use PNM?

• Contemporary numerical problems involve composition of
many base numerical methods into pipelines.

• BPNM can be straightforwardly composed under mild
conditions Cockayne et al. [2019].
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BayesCG



Probabilistic Linear Solvers

• Start with a Gaussian prior

x ∼ N (x0,Σ0)

• Use the data provided by some set of search directions to
construct the posterior:

s⊤mAx∗ = s⊤mb := ym

Let
Sm =

(
s1 · · · sm

)
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x|ym ∼ N (xm,Σm)

xm = x0 +Σ0A⊤SmΛ−1
m S⊤

m(b − Ax0)

Σm = Σ0 − Σ0A⊤SmΛ−1
m S⊤

mAΣ0

Λm = S⊤
mAΣ0A⊤Sm
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A Problem

To compute the posterior we must invert

Λm = S⊤
mAΣ0A⊤Sm

However
(Λm)ij = ⟨si, sj⟩AΣ0A⊤

Choosing AΣ0A⊤-orthonormal search directions makes this more
practical.
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Theorem (BayesCG)
Let

s̃m = rm−1 − ⟨sm−1, rm−1⟩AΣ0A⊤ · sm−1

Then after normalisation the directions s1, . . . , sm are
AΣ0A⊤-orthonormal.

Furthermore we have

xm = xm−1 +Σ0A⊤sm(s⊤mrm−1)

Σm = Σm−1 − Σ0A⊤sms⊤mAΣ0
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Cost

• O(md2) computation. (2-3 matrix-vector multiplications
per-iter).

• O(md) storage (need to store search directions).

More costly than CG, but comes with UQ.
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Theoretical Results I

Theorem (Krylov Subspace Method)
Let

K∗
m = x0 +Σ0A⊤Km(AΣ0A⊤, r0)

Then the BayesCG posterior mean satisfies

xm = argmin
x∈K∗

m

∥x − x∗∥Σ−1
0

Note that Σ0 = A−1 replicates CG!
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Theoretical Results II

Theorem (Convergence Rate)
∥xm − x∗∥Σ−1

0

∥x0 − x∗∥Σ−1
0

≤ 2
(√

κ(Σ0A⊤A)− 1√
κ(Σ0A⊤A) + 1

)m

Fastest convergence achieved when κ(Σ0A⊤A) ≈ 1.
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Experimental Results



Priors Considered

• Σ0 = A−1: Replicates CG.

• Σ0 = I: “Uninformative”.
• A-Priori Optimal Directions: Essentially random.
• Preconditioner Prior: Given a preconditioner P for A, set

Σ0 = (P⊤P)−1.
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Experimental Setup

• A a random sparse matrix (drawn using the matlab function
sprandsym).

• d = 100.
• Many test problems x∗ are drawn from N (0, I).
• BayesCG applied to m = 100.
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Convergence of Posterior Mean
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Assessment of Posterior UQ

To assess the UQ we make the ansatz that if the posterior is
“well-calibrated” then x∗ should look like a draw from the
posterior.

Then for the Z-statistic:

Z(x∗) := ∥x∗ − xm∥2
Σ†

m

we can prove that under the ansatz:

Z(x∗) ∼ χ2
d−m
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Assessment of Posterior UQ
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Poor UQ

S⊤
m(x∗)Ax = S⊤

m(x∗)Ax∗
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Non-Bayesian Methods



Stationary Iterative Methods2

Iteration is of the form

Pm = P ◦ · · · ◦ P︸ ︷︷ ︸
m times

i.e. each iteration is independent of all previous iterations.

In stationary iterative methods of first order:

P(x) := Gx + f
G ∈ Rd×d

f ∈ Rd

Examples: Jacobi iteration, Richardson iteration, …

2Young [1971]
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Pushforward Methods

Stationary iterative methods do not obviously give rise to a
Bayesian approach.

Bayesian methods are generally more expensive than classical
methods (often much more).
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Pushforward Methods

For an iterative method Pm define the associated pushforward
method:

µm = (Pm)#µ0

where P#µ is defined as

[P#µ](B) = µ(P−1B)

Accessible via a simple sampling algorithm:

1. Draw x ∼ µ0

2. Compute Pm(x)
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Pushforward Stationary Iterative Methods

Theorem (Probabilistic Linear Stationary Iterative Method
of First Degree)
Suppose µ0 ∼ N (x0,Σ0) and

Pm = P ◦ · · · ◦ P︸ ︷︷ ︸
m times

with P(x) = Gx + f. Then

µm = N (xm,Σm)

xm = Gmx0 +
m−1∑
i=1

Gm−if

Σm = GmΣ0(Gm)⊤
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But Why?

Assess these methods using the Z-statistic:

Z(x∗) = ∥x∗ − xm∥2
Σ†

m

Theorem
Suppose Σ0 is full-rank and G is a diagonalisable matrix of rank
r. Then rank(Σm) = r and

Z(x∗) ∼ χ2
r .

Thus these methods are automatically well-calibrated.
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Non-linear-Gaussian Case

The S-statistic is defined as

S(x,x′) = ∥x − x′∥2.

Let X∗ ∼ µref and X,X′ ∼ µm i.i.d. Then we say µm is
well-calibrated wrt µref if

S(X,X′) = S(X,X∗)
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Calibration of Pushforward CG
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Conclusions



Current Developments: BayesCG

• Stability properties in finite-precision.

• Accelerating convergence while obtaining better UQ:
• Further work on the Krylov prior.
• “Pushforward” methods.

Discussion now open!
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Current Developments: Pushforward Methods

• Further theory - generalising “well-calibrated”.

• Applications to other methods than linear systems?
• Optimizers?
• Eigenproblems?
• ...?
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Questions?
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