
Applied Data Assimilation: 
Diabetes phenotyping/forecasting 

+
Hybrid machine learning approaches

Matthew Levine
PhD Student in Computing and Mathematical Sciences

Advised by Andrew Stuart
California Institute of Technology

August 22, 2019



Why study the glucose-insulin system?
• High potential impact for improving:

• Diabetes clinical care
• Diabetes self-management
• Our understanding of the pathogenesis of obesity and diabetes
• Critical care (comatose patients, not necessarily diabetic)

• Data are available
• Glucose measurement technology is improving!!!
• Nutrition intake is often self-recorded by patients
• Methods for capturing self-administration of medications, like insulin
• Exercise and sleep (Fitbit etc!)

• Models are available
• Many mechanistic models have been proposed and experimentally validated by physiologists, mathematical biologists, 

et al. These are often non-linear systems of ODE’s.
• Artie’s model is novel because it is designed to describe the system, not just a particular clinical test
• Scientists are also working on machine learning approaches, but have had limited success so far.

• Challenging ( = FUN!)
• Dynamics are non-linear, time-delayed, and poorly understood overall.
• Measurements are noisy, missing not a random, limited to a subset of observable states, costly, and invasive.



Ongoing projects

1. Characterizing endocrine function (i.e. Bayesian inversion of biological 
parameters) in patients/mice with:
• Type 2 Diabetes (T2D) [free living fingersticks—patient-collected data]
• Polycistic Ovarian Syndrome (PCOS) [OGTT—clinically-collected data]
• Cystic Fibrosis-related Diabetes (CFRD) [free living fingersticks, CGM, OGTT]
• Because data are noisy and partially observed, we need to carefully quantify UNCERTAINTY 

in our parameter estimations.

2. Real-time glucose forecasting [real-world data] for:
• Type 2 Diabetes (patient-facing, meal-time decision support)

• Critically ill patients in the ICU (clinician-facing decision support)

3. Hybrid machine learning + mechanistic models to account for model error 
when making predictions
• mechanistic RNN

• Modeling residual errors



Parameter Estimation w/ Uncertainty 
via Bayesian Inversion
Biological Question: What are the relative roles are played by insulin production and 
insulin sensitivity in diabetes pathogenesis?

National Institutes of Health (NIH) – Arthur Sherman and Joon Ha



NIH Longitudinal Diabetes Pathogenesis Model (LDPM)
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Goal: Characterize endocrine function with parameter 
estimation from data…w/ UNCERTAINTY
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DATA from Oral Glucose Tolerance Test:
• Glucose and Insulin Measurements
• Measurements every 30min for 2-3 hours
• Collected in CLINICAL SETTINGS



Bayesian Inverse framework
• Consider solution operator to 

LDPM model

• Deterministic state dynamics 
governed by parameters theta:

• Solutions at measurement times 
in observation space:

• Data model:

 (x(s), t, s, ✓) = x(s) +

Z t

s
F (x, ⌧, ✓)d⌧



Bayesian Inverse framework

• Deterministic state dynamics 
governed by parameters theta:

• Solutions at measurement times 
in observation space:

• Data model:

• Likelihood:

• Posterior:

• Uniform Prior



Ready…set…sample! Metropolis Hastings MCMC
(results for 1 single OGTT for 1 single patient)



Now, can we estimate parameters from data 
collected in the wild by patients?

• Sparse, irregular sampling
• No Insulin Measurements
• Long-term (days to weeks)
• Noisy
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NEARLY UNIDENTIFIABLE



Large uncertainty in parameter estimates 
from free-living data

Posterior probability distributions 



Summary

Takeaways
• Endocrine inference is highly uncertain and parameters are unidentifiable, 

especially in free-living data
• This uncertainty/identifiability can be CHARACTERIZED with MCMC and other 

sampling techniques
• Can be USED to generate posterior distribution of Disposition Index (DI)

Future directions
• Estimate posterior parameter distributions for patients from a population
• Assemble these estimates into a “population distribution”
• Use this “population distribution” to better inform future inferences on this 

population



Real-time glucose forecasting via 
Data Assimilation



Data Assimilation for real-time prediction

• Applications
• Type 2 Diabetes (patient-facing, meal-time decision support)
• Critically ill patients in the ICU (clinician-facing decision support)

• The challenge
• Incorporate (”assimilate”) new/changing information into current belief about 

present and future…in real-time
• We NEVER observe insulin measurements in the wild!

• Our approach: Stochastic Filtering
• Linear models -> Kalman Filter
• Non-linear models -> Non-linear filters (Particle Filters, Unscented KF, EnKF)



Type 2 Diabetes Self-Monitoring Data

• Sparse, irregular sampling
• No Insulin Measurements
• Long-term (days to weeks)
• Noisy



Data Assimilation: Mathematical Framing

For linear models, use a Kalman Filter!
For non-linear models, need to approximate the mapping of the distribution…use non-linear filter!

Here, h chooses the glucose state, and the dynamics are governed by a continuous-time system



Unscented Kalman Filter for personalized glucose

forecasting

Albers, Levine, Gluckman, Ginsberg, Hripcsak, and Mamykina 2017

Iterative prediction-correction scheme

Can track states and parameters (dual, joint)

Levine, Albers, Stuart, and Hripcsak Comparing o✏ine & online data assimilation SIAM DS17 10 / 49



Unscented Kalman Filter for personalized glucose

forecasting

Albers, Levine, Gluckman, Ginsberg, Hripcsak, and Mamykina 2017

Significant challenges exist in parameter estimation with dual UKF.

Parameter estimates often do
not converge

UKF does not explore full
parameter space

Parameter tracking is designed
to adapt to between-

measurement dynamics, not
dynamics across multiple
measurements

Levine, Albers, Stuart, and Hripcsak Comparing o✏ine & online data assimilation SIAM DS17 13 / 49



Unscented Kalman Filter for personalized glucose

forecasting

Albers, Levine, Gluckman, Ginsberg, Hripcsak, and Mamykina 2017

Dual UKF often matches or beats clinical experts forecasts.

Levine, Albers, Stuart, and Hripcsak Comparing o✏ine & online data assimilation SIAM DS17 11 / 49



Results from real-time glucose forecasting

• PREVIOUS WORK: UKF w/ Cobelli model is operationalized in a 
patient-facing mobile application that is used by people with T2D for 
meal-time decision support (Albers et al. Plos Comp Bio 2017)
• Learning parameters is ESSENTIAL

• More recently:
• Simpler, non-mechanistic models seem to have better predictive performance
• Can CONSTRAIN the state space of EnKF, and this helps for operationalizing



Ensemble Kalman Filter (Evensen 2003)

P (vj |yj) ⇠ N(mj , Cj)

P (vj+1|yj) ⇠ N(bmj , bCj)
Assume Gaussian states:



Ensemble Kalman Filter



Constrained Ensemble Kalman Filtering—Why?

PROBLEM: Gaussian has infinite support, but our problem space often 
only makes sense on a compact set

GOALS: 
• Enforce model physicality (e.g. positivity)
• Maintain problem well-posedness (e.g. avoid parameter regimes that 

make forward map intractable)
• Provide robustness to outlier data 



Ensemble Kalman Filtering (EnKF) framework



Kalman update can be rewritten as a 
quadratic minimization



Constrained EnKF (Inverse Problems 2019)

Why constrain the system?
• Ensure physicality (e.g. Positivity of a physical concentrations)
• Ensure tractability of forward model

How to constrain the system?
• Minimize I_filter subject to linear equality and inequality constraints



Numerical results from Constrained EnKF 
application



Open questions/problems for real-time 
glucose forecasting
• Improvements with Offline/Online parameter estimation
• UQ of forecasts
• Incorporate new, informative data elements (protein, fat, sleep, 

exercise, insulin, medications)
• Model Selection/Averaging/Blending with Machine Learning



Uniting mechanistic modeling 
and machine learning for 
enhanced time-series predictions



Forecasting a dynamical system (simple, naive setting)

• Say we observe data from the true system: a discrete, deterministic dynamical 
system of form

• But we only have a model hypothesis
• How do we predict future trajectory?
• Scenarios
1. We know a lot about the system, and believe our hypothesis is true up to a 

specific parameterization…in this case, use DA for filtering!
• i.e. Block on a spring experiment

2. We know NOTHING about the system, so our hypothesis is a general function 
class…this is ML/deep learning/etc.

3. We hypothesize a specific mechanism with substantial, poorly understood 
inadequacies.

uk+1 =  (uk)

 ̃



Forecasting a dynamical system (simple, naive setting)

• Say we observe data from the true system: a discrete, deterministic dynamical 
system of form

• But we only have a model hypothesis
• How do we predict future trajectory?
• Scenarios
1. We know a lot about the system, and believe our hypothesis is true up to a 

specific parameterization…in this case, use DA for filtering!
• i.e. Block on a spring experiment

2. We know NOTHING about the system, so our hypothesis is a general function 
class…this is ML/deep learning/etc.

3. We hypothesize a specific mechanism with modest predictive power, but 
substantial inadequacies.

uk+1 =  (uk)

 ̃



Start with simple Recurrent Neural Network (RNN)



RNN can learn to predict the Lorenz 63 system



But can the RNN do better with more information? We 
propose the “mechRNN”

mechRNN

Analogous to Reservoir Computing approach by Pathak et al. (Chaos 2018) 



Lorenz 63 with perturbed parameter: 
A model for model error

Lorenz 63 with perturbed b parameter

ASSUMED, but WRONG generating system for training data ̃(uk) = uk +

Z tk+1

tk

f̃(u(t))dt

u̇ = f̃(u) = f(u, b̃)

 (uk) = uk +

Z tk+1

tk

f(u(t))dt TRUE generating system for training data



So can the RNN do better with imperfect information? Yes!

mechRNN

Analogous to Reservoir Computing approach by Pathak et al. (Chaos 2018) 



So can the RNN do better with imperfect information? Yes!

mechRNN

Analogous to Reservoir Computing approach by Pathak et al. (Chaos 2018) 

• Training data comes from 
high-fidelity solutions to 
Lorenz 63 with classical 
chaotic parameters

• mechRNN only sees the 
solution operator to a 
perturbed version of the 
true system



Even simpler, can we learn residual errors? Yes!

We learn G as a Gaussian Process Regression



Hybrid methods correct for large arbitrary model error



mechRNN requires fewer parameters than 
vanillaRNN



Tradeoff between mechRNN and GP-based residual 
learning---a function of the data’s sampling rate



Future Directions for mechanisms+ML

• Extend to data assimilation context (partial, noisy observations with 
irregular sampling)
• Flexible model averaging: exploit a family of models
• Extend to non-autonomous systems
• Allow for parameter inference within the mechanistic model
• In diabetes free-living case, use to ensemble models AND learn 

temporal impact of fat/protein/fiber and exercise.

{ ̃i}Ni=1
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