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Lecture plan

Lecture 1: Variational models & PDEs for imaging by examples

Lecture 2: Derivation of these models & analysis

Lecture 3: Numerical solution

Lecture 4: Some machine learning connections
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The variational approach
General task: restore u from an observed datum g where

g = Tu|{z}
forward model

+ n|{z}
noise

.

Variational approach: Compute u as a minimizer of

J (u) = ↵ R(u)| {z }
regularization

+ D(Tu, g)| {z }
data fidelity

! min

u2B
,

where

R(u) is a prior/regularizer that models a-priori information on u weighted
by positive ↵, e.g., R(u) = krukL1

D(·, ·) is a distance function, e.g. D(Tu, g) = kTu � gk22 and B suitable
Banach space, e.g., B = BV (⌦).

Engl, Hanke, Neubauer ’96; Natterer, Wübbeling ’01; Kaltenbacher, Neubauer, Scherzer ’08;
Schuster, Kaltenbacher, Hofmann, Kazimierski ’12
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Which model to choose?

Mathematics can make you fly! J. Grah, K. Papafitsoros, CBS, EPSRC Science Photo Award ’14,
Burger, He, CBS ’09; CBS, Bertozzi ’11; CBS, CUP ’15; Chan, Shen ’01; Bertalmio et al. ’00;
Masnou, Morel ’98.
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Diffusion versus transport inpainting

Input image
References: Bertalmio, Sapiro, Caselles, Ballester 2000; Telea 2004; Bornemann, Maerz 2007;

Burger, He, CBS, SIAM Imaging Science ’09; CBS, CUP ’15.
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Diffusion versus transport inpainting

Diffusion
References: Bertalmio, Sapiro, Caselles, Ballester 2000; Telea 2004; Bornemann, Maerz 2007;

Burger, He, CBS, SIAM Imaging Science ’09; CBS, CUP ’15.
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Diffusion versus transport inpainting

Transport
References: Bertalmio, Sapiro, Caselles, Ballester 2000; Telea 2004; Bornemann, Maerz 2007;

Burger, He, CBS, SIAM Imaging Science ’09; CBS, CUP ’15.
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How to inpaint?

Image inpainting: create desired inpaintings.

‘Ecce mono’
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How to inpaint?

Image inpainting: create desired inpaintings.

‘Ecce homo’

‘Ecce mono’
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How to inpaint?

Image inpainting: create desired inpaintings.

Image courtesy of R. Hocking.

References: Arias, Facciolo, Caselles,

Sapiro ’09–

‘Ecce mono’
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Deep image processing

Picture from strong analytics. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.
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Learning variational models - one idea

Assumptions
Training set of pairs (fk, uk), k = 1, . . . , N with

fk imperfect data
uk represent the ground truth

Determine optimal regulariser R, data model �, and ↵ in admissible set
A

min

(R,�,↵,T )2A

X

k

loss(ūk, uk)

subject to

ūk = argminu

⇢
↵ R(u) +

Z

⌦
�(Tu, fk) dx

�
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Learning by optimisation in imaging

Some contributions

Odone ’05–, Tappen et al. ’07, ’09; Domke ’11–: Markov Random Field models; stochastic
descent method
Lui, Lin, Zhang and Su ’09: optimal control approach, no analytical justification; promising
numerical results.
Horesh, Tenorio, Haber et al. ’03–: optimal design; `1 minimisation.
Kunisch and Pock ’13, Pock 13’ –: results for finite dimensional case; optimal image filters;
optimal SVM; optimal reaction-diffusion . . .
De Los Reyes, CBS ’13 –: results on bilevel learning in function space and development of
numerical optimisation.
Fornasier, Naumova, Pereverzyev 14’: parameter estimation in multipenalty regularisation.
Hintermüller et al. ’14 – : bilevel optimisation for blind deconvolution, and for adaptive TV
denoising.
Nikolova, Steidl, Weiss ’15
Fonseca, Liu et al. ’16 –: bilevel model for higher-order TV type regularisation and
Mumford-Shah; analysis in function space . . .

Analysis in function space & resolution independent optimisation.
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Learning a parametrised model

Look for � = (�1, . . . , �M ) and ↵ = (↵1, . . . , ↵N ) solving

min

(�,↵)2[0,1]M+N
F (u�,↵)

subject to

u�,↵ 2 argminu2X

MX

i=1

Z

⌦
�i(x)�i([Tu](x)) dx

+

NX

j=1

Z

⌦
↵j(x) d|Aju|(x).

Here T : X ! Y ⇢ L

1
(⌦;Rd

) with X, Y Banach spaces,
Aj : X ! M(⌦;Rmj

), (j = 1, . . . , N ) are appropriate linear operators,
|Aju| total variation measure, F is cost function.
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TV regularisation

Cross-validated computations on the Berkeley database split into two halves (100 images each):

Total variation regularisation with L2 cost and fidelity. Noise variance � = 10.

Validation Learning ↵ Average PSNR Average SSIM
1 1 0.0190 31.3679 0.8885
1 2 0.0190 31.3672 0.8884
2 1 0.0190 31.2619 0.8851
2 2 0.0190 31.2612 0.8850
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Parameter optimality?

Quality measure

Original cost functional (left figure) ku � ukk2L2

Signal to noise ratio (right figure)

SNR = 20 ⇥ log10

✓
kukkL2

ku � ukkL2

◆
,
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Parameter optimality?

Courtesy of Pan Liu and Irene Fonseca using Strong, Chan, et al. ’96.
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And that is not all . . .

A few more examples of bringing together
model-based imaging and learning . . .
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Thomas Pock et al.

The nonconvex fields of experts model

� Let us consider the following nonconvex model [Roth, Black ’09],
[Samuel, Tappen ’09], called the “Fields of Experts” model:

R(u) =
qX

k=1

m,nX

i,j=1

�k((Kku)i,j)

� {Kk} are arbitrary filter kernels, and {�k} are potential functions

� Has much more parameters compared to the �1 model (several
thousands)

� Allows only to compute a stationary point (local minimum)

� Suitable potential functions �l are derived from statistics of natural
images [Huang and Mumford ’99]:
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�k(t) = ↵k log(1 + �kt2)
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Thomas Pock et al.

The learned filters and functions

� In [Chen, Ranftl, P. ’14] we learned 80 filters of size 9 ⇥ 9 plus
function parameters ! 6480 parameters on a database of � 200
images

� ... two weeks later ...
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Thomas Pock et al.

Evaluation

� Comparison with five state-of-the-art approaches: K-SVD [Elad and
Aharon ’06], FoE [Q. Gao and Roth ’12], BM3D [Dabov et al. ’07],
GMM [D. Zoran et al. ’12], LSSC [Mairal et al. ’09]

� We report the average PSNR on 68 images of the Berkeley image
data base [Chen, P. 14]

� KSVD FoE BM3D GMM LSSC BL7x7 BL9x9

15 30.87 30.99 31.08 31.19 31.27 31.18 31.22
25 28.28 28.40 28.56 28.68 28.70 28.66 28.70
50 25.17 25.35 25.62 25.67 25.72 25.70 25.76

� Performs equally or better as the state-of-the-art

13 / 42
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Thomas Pock et al.

Variational networks

� Inspired by the conditional shrinkage fields (CSF) [Schmidt, Roth
’14], we allow to change the parameters during the iterations:

�
��

��

u0 = f

ut+1 = ut � �

t

�
qX

k=1

(K t
k )�(�t

k)
�(K t

kut) + (ut � f )

�
, t = 0...T � 1

� In each step we perform one gradient descent on a learned
variational energy

� Can be interpreted as one cycle of a block incremental gradient
descent

� Can also be interpreted as learned non-linear di�usion, trying to
“invert” the convolution

�
p(f |u)p(u)du

� And it can be interpreted as a convolutional neural network with T
layers
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Thomas Pock et al.

Quantitative evaluation

� We evaluated our learned models on a standard database of 68
images
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Ozan Öktem & Jonas Adler

Learning to reconstruct

� Variational regularization:
Iterative schemes

� Learned operators

� Data in ! reconstruction out

Algorithm 1 Learned Gradient
1: for i = 1, . . . do
2: �fi � ��

�
fi , r

�
L(T (·), g)

�
(fi�1)

�

3: fi � fi�1 + �fi

Ground truth

TV (38 dB)

FBP (36 dB)

Learned (44 dB)

J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, to appear in Inverse Problems

’17. See also M. Unser et al. 2017 forward
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Deep image processing

This is unfeasible for many ill-posed inverse imaging problems

Picture from strong analytics. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.
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Thank you very much for your attention!

More information see:
http://www.ccimi.maths.cam.ac.uk
http://www.cmih.maths.cam.ac.uk
http://www.damtp.cam.ac.uk/research/cia/
Email: cbs31@cam.ac.uk
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