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Example 3, revisited

Nature Neuroscience 2010
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Timeline of events in the compelled-saccade task

time (ms)

1000 ms

RT

Fixation

Targets on

Go

Cue

Saccade

500 ms

gap (50-250 ms)

random (250-500 ms)

The fixation circle
indicates the color of the
target (green).

The participants must
initiate a saccadic
response (left or right)
when the fixation circle
disappears (Go).

Target and distracter
colors and positions are
revealed after a gap of
50 - 250 ms (Cue).
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Timeline of events in the compelled-saccade task

time (ms)

1000 ms

RT

Fixation

Targets on

Go

Cue

Saccade

500 ms

gap (50-250 ms)

random (250-500 ms)

A trial is correct if the
participant makes an eye
movement to the
peripheral location that
matches the color of the
fixation circle (green).

Response time is defined
from the offset of the
fixation circle to
initiating a saccade.
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Ideas behind the compelled-saccadic task

Separating perceptual decision making and motor-planning stages by
always instructing the participant when to respond (go)

Motor response is triggered first (go) → mean RT should be
approximately constant

Perceptual performance is expected to change systematically as a
function of gap but motor performance is not
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Experiments

Data from 2 monkeys (Stanford et al. 2010, Nature Neuroscience)

8 participants from Jacobs University – three groups (clustered
according to choice frequency patterns)

Saccadic onset times (SRT) – recorded with Eyelink1000 Eye tracking
System (SR Research); mobile camera, which recorded monocular
gaze data from the left eye at a sampling rate of 1000 Hz.
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Percentage of correct responses and mean choice SRT
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SRT distributions
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Timeline, revisited

time (ms)1000 ms

RT

Go Cue Saccade

Gap

50-250 ms

Decision time
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Two-stage model

The first stage includes the processes from onset of go signal to the
onset of the cue.

µ(x , t) = µ1 = 0

The second stage includes the processes from the onset of the cue
until a decision is made.

µ(x , t) = µ2
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Two-stage model
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Two-stage model

Or, as an alternative for the second stage

µ(x , t) = δ − γx
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Two-stage model
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Deterministic time and order schedule

2 attributes (stages); fixed attention time – gap time; n = t/τ

Probability to choose A

pA = Z ′
n1∑
i=1

Q i−1
1 RA1 + Z ′Qn1

1

∞∑
i=n1+1

Q
i−(n1+1)
2 RA2

Mean RT to choose A

ETA =
τ

pA

Z ′ n1∑
i=1

iQ i−1
k1

RA1 + Z ′Qn1
1

∞∑
i=n1+1

iQ
i−(n1+1)
2 RA2

 .
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Model predictions – choice probability and mean choice RT

γ > 0 γ = 0 γ < 0
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Recall

For δ1 < δ2: model predicts always fast errors
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Distribution

n = t/τ

Pr [T < n1 ∩ choose A] = Z ′
n1∑
i=1

Qn−1
1 RA1

Pr [n1 ≤ T ∩ choose A] = Z ′Qn1
1

∞∑
i=n1+1

Q
i−(n1+1)
2 RA2
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Model predictions – probability distributions

γ > 0 γ = 0 γ < 0
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Parameter estimations

3 (4) parameters (Wiener: boundary θ; drift rate δ2; non-decision
time TND : OUP plus γ)

9 gap times → 9 choice frequencies; 18 mean choice response times
→ 27 data points

Objective function: Σ( (observed-predicted)/observed std error)2

Matlab fminsearchbnd
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Model accounts - choice probabilities and mean choice
SRT
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Estimated parameters

θ δ γ TND χ2 AIC

G1 22 0.7172 – 0.2070 140 104
21 1.1569 0.0359 0.2114 138 112

G2 11 0.6917 – 0.2072 93 57
13 0.2293 −0.0237 0.1852 33 7

G3 14 0.0638 – 0.0841 166 130
15 0.0594 −0.0023 0.0724 144 118

G 12 0.3043 – 0.1942 428 392
12 0.5346 0.0451 0.1931 401 374

S 13 0.3358 – 0.1684 524 488
13 0.5848 0.0428 0.1682 466 440
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Predicting the distributions – same parameters
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Problem – your advise is appreciated

How to estimated the density function?

Appropriate bins

Vectors of different lengths

Times scale

· · ·
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Stanford et al. 2010; Shanker et al. 2011, approach
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Accelerated race-to-threshold model – 5 trials

Two competing variables, xL
and xR represent the mean
activity of neurons that
trigger eye movements to
the left and to the right.

The one reaching a certain
fixed threshold first (the
winner of the race)
determines the direction of
the saccade occurring a
short efferent delay after
that.
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Accelerated race-to-threshold model

Two different stages must
be distinguished:

one in which no cue
information is yet
available and
another in which the cue
boosts one of the motor
plans and suppresses the
other.
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Accelerated race-to-threshold model

This information build-up
assume build-up rates rR and
rL of xL and xR , respectively
drawn from a bivariate
Gaussian distribution.

Constant

After the cue information
arrives showing, e.g., the
target is on the right side,
the build-up rate of xR
accelerates and xL
decelerates (again at
constant rates) until a
target value is reached.
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Race parameters: free (Shanker et al. 2011 version)

rG : mean of bivariate normal distribution for build-up rates for rR and
rL; constant within one trial: dxR/dt = rR ,dxL/dt = rL

σG : standard deviation of bivariate normal distribution for build-up
rates for rR and rL

ρ correlation coefficient; correlation between rR and rL

• rT “direction changer“ for target: drR/dt = (rT − rR)/τ

• rD “direction changer“ for distractor: drD/dt = (rT − rD)/τ

• τ time to reach the final values of rT and rD

• T1: start of interrupt time relative to cue (ms)

• T2 : end of interrupt time relative to cue (ms)

• TND : non-decision time (afferent and efferent)

• sdTND : SD of non-decision time (afferent and efferent)

• pe : small error probability
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Fixed

∆T : variability in the afferent delay (N(0, 100))

Decision boundary: 1000 units
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Other model parameters: fixed

Nit = 5000; number of races in one shot
x0 R = 0; relative offset in R starting point
x0 L = 0; relative offset in L starting point
RTcut = 600; RT cutoff (in ms)
Twait = 0; to simulate the monkey waiting for the cue
Teff = 20; mean efferent delay (to limit variability only)
Taff min = 20; minimum afferent delay
Taff = Tnd - Teff; mean afferent delay (to limit variability only)
xdip = -Inf; minimum allowed activity level
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Results
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