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Overview

e Part 1

o Motivation — 3 Examples
e Basic assumptions of sequential sampling models (as used here)
e Multi-stage sequential sampling models
e Part 2
e Time and order schedules
Implementation
Predictions
Impact of attention time distribution
Impact of attribute order
o Part 3
e Applications
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Example 3, revisited

Perceptual decision making in less than 30 milliseconds

Terrence R Stanford, Swetha Shankar, Dino P Massoglia, M Gabriela Costello & Emilio Salinas

In perceptual discrimination tasks, a subject’s response time is determined by both sensory and motor processes. Measuring

the time consumed by the perceptual evaluation step alone is therefore complicated by factors such as motor preparation, task
difficulty and speed-accuracy tradeoffs. Here we present a task design that minimizes these confounding factors and allows us

to track a subject’s perceptual performance with unprecedented t | lution. We find that L can make t
color discriminations in less than 30 ms. Furthermore, our simple task design provides a tool for elucidating how neuronal activity
relates to sensory as opposed to motor processing, as demonstrated with neural data from cortical oculomotor neurons. In these
cells, perceptual information acts by |lerating and decelerating the ing motor plans associated with correct and incorrect
choices, as predicted by a race-to-threshold model, and the time course of these neural events parallels the time course of the
subject’s choice accuracy.

Nature Neuroscience 2010
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Timeline of events in the compelled-saccade task

@ The fixation circle
Fixation indicates the color of the
target (green).

Targets on

@ The participants must
initiate a saccadic
response (left or right)
when the fixation circle

fffffffffffffff disappears (Go).

gap (50-250 ms) Saccade

random (250-500 ms)

@ Target and distracter
colors and positions are
revealed after a gap of
50 - 250 ms (Cue).

1000 ms

time (ms)
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Timeline of events in the compelled-saccade task

@ A trial is correct if the
Fixation participant makes an eye
movement to the
peripheral location that
matches the color of the
fixation circle (green).

Targets on

random (250-500 ms)

@ Response time is defined
fffffffffffffff from the offset of the

gop (30250 ms) === fixation circle to
initiating a saccade.

time (ms)
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Ideas behind the compelled-saccadic task

@ Separating perceptual decision making and motor-planning stages by
always instructing the participant when to respond (go)

e Motor response is triggered first (go) — mean RT should be
approximately constant

@ Perceptual performance is expected to change systematically as a
function of gap but motor performance is not
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e Data from 2 monkeys (Stanford et al. 2010, Nature Neuroscience)
@ 8 participants from Jacobs University — three groups (clustered
according to choice frequency patterns)

@ Saccadic onset times (SRT) — recorded with Eyelink1000 Eye tracking
System (SR Research); mobile camera, which recorded monocular
gaze data from the left eye at a sampling rate of 1000 Hz.
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Percentage of correct responses and mean choice SRT
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SRT distributions
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Timeline, revisited

Go Cue Saccade

® —

Gap

——————————————————— 50-250 ms 1000 ms time (ms)

Decision time RT
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Two-stage model

@ The first stage includes the processes from onset of go signal to the
onset of the cue.

M(Xa t) =p1=0

@ The second stage includes the processes from the onset of the cue
until a decision is made.

M(Xa t) = K2
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Two-stage model
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Two-stage model

@ Or, as an alternative for the second stage

p(x, t) =6 —yx

Adele Diederich (JUB) Multi-stage models March 18 — 22, 2019 13 / 35



Two-stage model

"Right”
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Deterministic time and order schedule

2 attributes (stages); fixed attention time — gap time; n = t/7

@ Probability to choose A

PA—Z'ZQ{ 'Ra, +2Z2'Q" Z Q' (m+) Ra,

i=1 i=m+1

@ Mean RT to choose A

n fe'e) )
ETa=— 2> iQ Ray + Z/Q1 Y iQ (MR,

PA i—1 i—m+1
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Model predictions — choice probability and mean choice RT
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@ For §1 < d2: model predicts always fast errors
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Distribution

n=t/t

n
Pr[T < ny Nchoose Al = Z’ Z Qf_lRA1
i=1

o0
Prin1 < T Nchoose A] = Z' Q" Z Qé_(”l‘i‘l)RAQ
i=m+1
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Model predictions — probability distributions

Adele Diederich
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Parameter estimations

@ 3 (4) parameters (Wiener: boundary 6; drift rate d; non-decision
time Typ: OUP plus )

@ 9 gap times — 9 choice frequencies; 18 mean choice response times
— 27 data points

o Objective function: ¥( (observed-predicted)/observed std error)?
o Matlab fminsearchbnd
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Model accounts - choice probabilities and mean choice
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Estimated parameters

0 ) Y TND X2 AIC
Gl 22 0.7172 - 0.2070 140 104
21 1.1569 0.0359 0.2114 138 112
G2 11 0.6917 - 02072 93 57
13 0.2293 -0.0237 0.1852 33 7
G3 14 0.0638 - 0.0841 166 130
15 0.0594 —-0.0023 0.0724 144 118
G 12 0.3043 — 0.1942 428 392
12 0.5346 0.0451 0.1931 401 374
S 13 0.3358 — 0.1684 524 488

13 0.5848 0.0428 0.1682 466 440
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Predicting the distributions — same parameters

300 m 30 500 30 E) 500 30
Timo (ms) Timo (ms) Timo (ms) Time (ms) Time (ms)

Adele Diederich March 18 — 22, 2019 24 /35




Problem — your advise is appreciated

How to estimated the density function?
Appropriate bins
Vectors of different lengths

Times scale
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@ Stanford et al. 2010; Shanker et al. 2011, approach
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Accelerated race-to-threshold model — 5 trials

a ___:___________72{_ @ Two competing variables, x;

and xgr represent the mean
activity of neurons that
trigger eye movements to
the left and to the right.

@ The one reaching a certain
fixed threshold first (the
winner of the race)
determines the direction of
the saccade occurring a
short efferent delay after
that.
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Accelerated race-to-threshold model

130ms * e Two different stages must
be distinguished:

e one in which no cue
information is yet
available and

e another in which the cue
boosts one of the motor
plans and suppresses the
other.
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Accelerated race-to-threshold model

@ This information build-up
assume build-up rates rg and
rp of x; and xg, respectively
drawn from a bivariate
Gaussian distribution.

@ Constant

o After the cue information
arrives showing, e.g., the
target is on the right side,

dr the build-up rate of xg
accelerates and x;
decelerates (again at
er

constant rates) until a
target value is reached.
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Race parameters: free (Shanker et al. 2011 version)

@ rg: mean of bivariate normal distribution for build-up rates for rr and
ri; constant within one trial: dy,/dy = rr.dyx, /dr = 11

@ o¢: standard deviation of bivariate normal distribution for build-up
rates for rg and r;

@ p correlation coefficient; correlation between rg and r;

e rr "direction changer" for target: d,,/dy = (rr — rr)/7

e rp “direction changer" for distractor: d,,/d¢ = (rr — rp)/7
e 7 time to reach the final values of ry and rp

e Tj: start of interrupt time relative to cue (ms)

e T, : end of interrupt time relative to cue (ms)

e Tpyp: non-decision time (afferent and efferent)

e sdTnp: SD of non-decision time (afferent and efferent)

o pe: small error probability
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e AT: variability in the afferent delay (N(0,100))
@ Decision boundary: 1000 units
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Other model parameters: fixed

Nit = 5000; number of races in one shot

x0_R = 0; relative offset in R starting point

x0_L =0; relative offset in L starting point

RTcut = 600; RT cutoff (in ms)

Twait = 0; to simulate the monkey waiting for the cue
Teff = 20; mean efferent delay (to limit variability only)
Taff_min = 20; minimum afferent delay

Taff = Tnd - Teff;, mean afferent delay (to limit variability only)
xdip = -Inf; minimum allowed activity level
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