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Plan of the talk

I Diffusion Forecast: Probabilistic prediction of deterministic
dynamics and Itô diffusion processes.

I Data assimilation for specifying initial densities from observed
data for diffusion forecast.



Probabilistic forecasting problem:

Suppose the variables of interest x(t) ∈M ⊂ Rn satisfy,

dx = a(x)dt + b(x) dWt ,

with distribution characterized by a density function p(x , t) that
satisfies a PDE called the Fokker-Planck equation,

∂tp = −∇ · (ap) +
1

2
∇ · ∇ · (bb>p) ≡ L∗p.

Probabilistic forecasting problem:
Given initial distribution p(x , 0) = p0(x), one is interested to find

p(x , t) = etL
∗
p0(x)

and the corresponding statistics,

E[f ](t) ≡
∫
Rn

f (x)p(x , t) dx .

of some function f .
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Probabilistic forecasting problem:

Classical solutions:

I If one knows a(x), b(x),M, BC’s, and IC’s, then solve the
Fokker-Planck equation with appropriate PDE solvers.

I For high dimensional application, apply Monte-Carlo
(ensemble forecasting, see Epstein 1969, Leith 1974), i.e.,
Sample initial conditions xk ∼ p0(x) and solve an ensemble of
initial value problems,

dx = a(x)dt + b(x) dWt ,

x(0) = xk , k = 1, . . . ,K .

Suppose the ensemble solutions at time ti > 0 is denoted by
xk
i , then one can compute the statistics via Monte-Carlo,

E[f ](ti ) ≡
∫
Rn

f (x)p(x , t) dx ≈ 1

N

N∑
k=1

f (xk
i )
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Nonparametric forecasting

Problem: Given only a time series of of xi = x(ti ), i = 1, . . . ,N,
solve the Fokker-Planck equation for p(x , t). In other words, L∗,
a(x), b(x), M, and BC’s are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, xi ∼ peq(x), where L∗peq = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.



Nonparametric forecasting

Problem: Given only a time series of of xi = x(ti ), i = 1, . . . ,N,
solve the Fokker-Planck equation for p(x , t). In other words, L∗,
a(x), b(x), M, and BC’s are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, xi ∼ peq(x), where L∗peq = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.



Nonparametric forecasting

Problem: Given only a time series of of xi = x(ti ), i = 1, . . . ,N,
solve the Fokker-Planck equation for p(x , t). In other words, L∗,
a(x), b(x), M, and BC’s are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, xi ∼ peq(x), where L∗peq = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.



Nonparametric forecasting

Problem: Given only a time series of of xi = x(ti ), i = 1, . . . ,N,
solve the Fokker-Planck equation for p(x , t). In other words, L∗,
a(x), b(x), M, and BC’s are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, xi ∼ peq(x), where L∗peq = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.



Review of Galerkin method

Had we know the PDE,

p(x , t + τ) = eτL
∗
p(x , t),

one can solve this problem with a Galerkin method. That is, pick a
basis function ψj(x) depending on the geometry and represent the
solutions of the PDE as linear combinations of these basis
functions,

p(x , t + τ) =
∑
j

cj(t + τ)ψj(x),

then solve the system of ODE’s,

ck(t + τ) =
∑
j

〈ψk , e
τL∗ψj〉cj(t),

under the appropriate inner product.

Problem: We don’t have ψj(x) and we don’t know L∗
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Recall of the diffusion maps

I We use the diffusion maps1,2 to generate a data driven basis
function ϕj . This kernel based method uses the data
xi ∼ peq(x) to approximate eigenfunctions of a weighted
Laplacian,

L̂ = p−1
eq div(peq∇ ) = ∇ log(peq) · ∇+ ∆

which is the generator of a gradient flow with isotropic
diffusion,

dx = ∇ log(peq) dt +
√

2dWt .

I One can check that the eigenfunctions of the adjoint operator
L̂∗ are ϕj(x)peq(x), which forms an orthonormal basis for
L(M, p−1

eq ) assuming that L̂ has pure point spectra.

1Coifman & Lafon, Appl. Comput. Harmon. Anal., 2006
2Berry & H, Appl. Comput. Harmon. Anal., 2016.



Diffusion Forecast

With these data-driven basis functions, we represent the solutions
of the Fokker-Planck equation as,

p(x , t + τ) =
∑
k

ck(t + τ)ϕk(x)peq(x),

where

ck(t + τ) =
∑
j

〈ϕkpeq, e
τL∗ϕjpeq〉p−1

eq
cj(t),

=
∑
j

〈eτLϕk , ϕj〉peqcj(t),

Q: How do you estimate 〈eτLϕk , ϕj〉peq?



Gradient Flow System

If the underlying dynamical system is indeed a gradient flow with
isotropic diffusion with invariant density,

peq(x) = exp(−U(x)/D)

where D > 0 is a constant, then diffusion maps will approximate,

L̂ = ∇ log(peq) · ∇+ ∆ = D−1∇U · ∇+ ∆.

and our goal is to approximate the generator

L = DL̂ = ∇U · ∇+ D∆.

HW for students: Estimate D from timeseries?



Gradient Flow System3

If {ϕk} denote a set of orthonormal basis of L̂ under L2(M, peq),
it is then immediate to see that,

eτLϕk = eλkDtϕk ,

which means that,

〈eτLϕk , ϕj〉peq = eλkDτδk,j .

The solution of the Fokker-Planck is given as,

p(x , t + τ) =
∑
k

ck(t + τ)ϕk(x)peq(x)

=
∑
k

∑
j

〈eτLϕk , ϕj〉peqcj(t)ϕk(x)peq(x)

=
∑
k

eλkDτck(t)ϕk(x)peq(x)

3Berry and H, SIAM J. Uncertainty Quantification, 2015.



Example

Given data set of x(t) that solves the following chaotic oscillator,

ẋ = x − x3 +
γ

ε
y2,

ẏ1 =
10

ε2
(y2 − y1),

ẏ2 =
1

ε2
(28y1 − y2 − y1y3),

ẏ3 =
1

ε2
(y1y2 −

8

3
y3).

It is well known that for a sufficiently small γ, ε, the dynamics can
be approximated by4,

dX = X (1− X 2) dt + σ dWt .

4Givon, Kupferman, & Stuart 2006



Evolution of the density

(Loading Video...)
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Forecasting moments

10
−1

10
0

10
1

10
2

10
3

−1

−0.5

0

0.5

1

time

F
o
re

c
a
s
t 
V

a
lu

e

 

 

1st Moment

2nd Moment

3rd Moment

4th Moment

Monte Carlo Moments



Bayesian filtering problem

Consider now a dynamical system with continuous-time noisy
observations

dx = −∇U(x) dt +
√

2D dW ,

dz = h(x) dt +
√

RdWz .

The filtering problem is to obtain the following conditional
distribution,

p(x |z) ∝ p(x)p(z |x)

and its statistics. Indeed, the un-normalized conditional density,
r(x , t) = p(x , t)

∫
M r(x , t)dV (x), solves a linear SPDE known as

the Zakai equation,

dr = L∗r dt + rh>R−1dz .

Key idea: project this SPDE into the diffusion coordinates.
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Evolution of the posterior density

Example filtering the double-well potential with observation
function h(x) = (x − 0.05)2.

(Loading Video...)
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Evolution of the posterior density

Example filtering the double-well potential with observation
function h(x) = x2.

(Loading Video...)
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Response Problem (climate sensitivity)

Given data set xi ∼ peq(x) of the current climate (or equilibrium
state) and an external perturbation, δU, on the unknown potential
U, compute the response of the statistics as functions of time,

δE[A(x)](t) = Epδ [A(x)](t)− Epeq [A(x)], t ≥ 0.

for functional A.

Remark: If the dynamical models for the unperturbed system are
known, given the functional of the perturbation, one can just apply
Monte-Carlo.
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Response Problem (climate sensitivity)

Recall the variable bandwidth diffusion kernel5, we prove that our
discrete diffusion maps with variable bandwidth kernel

Kε(x , y) = exp(− ||x−y ||
2

ερ(x)ρ(y) ) produces

Lεf = ∆f + 2(1− α)∇f · ∇q

q
+ (d + 2)∇f · ∇ρ

ρ
+O(ε)

The key idea is to apply diffusion maps on the data set xi ∼ peq(x)
with the variable bandwith kernel with bandwidth function

ρ(x) = peq(x)−1/2e
− δU(x)

D(d+2) . This allows us to learn the generator
corresponding to the perturbed system,

dx = −∇(U(x) + δU(x)) dt +
√

2DdW .

5Berry & H, Appl. Harmon. Comput. Anal., 2016



Response of the density due to an external forcing

(Loading Video...)
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Response statistics

Evolution of the moments compared to those of the stochastic
Monte-Carlo simulations.
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General Itô diffusion processes: L̂ 6= cL for any c ∈ R

The Dynkin formula states that for any fcn f (x) ∈ C 2(M) on
compact manifold, the solutions of the backward Kolmogorov of
Ito diffusion,

ut = Lu, u(x , ti ) = f (xi ),

can be expressed as

eτLf (xi ) = Exi [f (xi+1)],

where ti+1 = ti + τ .

If we define a shift operator Sτ f (xi ) = f (xi+1), then

eτLf (xi ) = Exi [Sτ f (xi )]

which gives a hint that we can approximate eτL with Sτ .
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Diffusion Forecast

We6 approximate eτL with a shift operator Sτ defined as follows:
Sτ f (xi ) = f (xi+1), where ti+1 = t1 + τ . Numerically,

〈eτLϕk , ϕj〉peq ≈ 〈Sτϕk , ϕj〉peq ≈
1

N

N∑
i=1

Sτϕk(xi )ϕj(xi )

=
1

N

N∑
i=1

ϕk(xi+1)ϕj(xi ),

where {xi}Ni=1 ∼ peq(x).

So all we need is the basis function ϕj which we learn from the
diffusion maps and set

p(x , t + τ) ≈ p̂(x , t + τ) :=
M∑
k=0

M∑
j=0

〈Sτϕk , ϕj〉peqcj(t)ϕk(x)peq(x),

6Berry, Giannakis, and H, Phys. Rev. E 2015.
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Error estimate7

Theorem
Let p(x , τ) ∈ L2(M, p−1

eq ) for all t ≥ 0 be the solutions of FP eqn
with bounded diffusion tensor, b, and assume that M is compact.
Let p̂(x , τ) be the approximate solutions from the diffusion
forecast method. Then there exists sufficiently large M > 0 and
constant C > 0 such that,

E
[
‖(p(·, τ)− p̂(·, τ))2‖2

p−1
eq

]
≤ C

τ

N
.

7H, Cambridge University Press 2018 (see Chapter 6).



Lorenz-63

Lorenz model:

ẋ = σ(y − x), ẏ = x(ρ− z)− y , ż = xy − βz .

(Loading Video...)
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A 2D fast-slow stochastic system in a torus

Learning from a three-dimensional data (x(θ, φ), y(θ, φ), z(θ, φ))
whereas the intrinsic dynamical system is two dimensional (θ, φ).

(Loading Video...)


torusForecast.mov
Media File (video/quicktime)



Specifying initial conditions given new observations

If the observation y is not noisy, p(x) = δy (x). Then the initial
coefficients are given as,

ck(0) = 〈p, ϕk〉 = ϕk(y).

So all we need to do is to extend the diffusion maps basis on new
data point y . This can be done using the Nystrom extension8

For discrete-time noisy observations y with likelihood function
p(y |x), we can apply the Bayes’s theorem9 to estimate initial
density,

p(x |y) ∝ p(x)p(y |x),

where the prior densities are from the diffusion forecast,

p(x) =
∑
j

cj(t)ϕj(x)peq(x)

8Yang & H, J. Nonlinear Science, 2018.
9Berry & H, Physica D, 2016.
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Forecasting barotropic modes of QG turbulence10
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Model: 2-layer QG with baroclinic

instabilities. Parameter F ∝ L−2
D

.

Diffusion forecasting is trained on noisy
Fourier modes corresponding to 36
spatially uniform grid points. Training is
performed on 5000 noisy data points
(with time-delay embedding) while the
forecast verification is done on separate
4000 data points.

We apply the Bayesian filter to initialize
the forecast densities.

We compare it to:

I SPEKF: A stochastic parametric
modeling approach with additive
and multiplicative noises.

I persistent forecast: Tomorrow’s
forecast is exactly equal to
today observation.

10Berry & H, Physica D, 2016.



Application: Forecasting the El Nino Index 3.4
Left: Taken from comment to our paper by Kondrashov, Chekroun, & Ghil Phys. Rev. E, 2016. They published
their modeling approach in PNAS 2011.

Right: Diffusion forecast is trained on only 600 data point (monthly between Jan 1950-Dec 1999. Forecast
verification on Jan 2000-march 2014. Berry, Giannakis, & H Phys. Rev. E 2016.

14-month lead-time forecast skill:
PNF RMSE 0.86, PC 0.52
Diffusion Forecast RMSE 0.77, PC 0.64.
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Example: Lorenz-96 6D 11

lead time (in model time unit)
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Note: Training data N = 106. There are still plenty of room for
improvement for high-dimensional problems.

11Yang and H, J. Nonlinear Science, 2018.
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