Nonparametric modeling of dynamical systems

John Harlim Department of Mathematics Department of Meteorology & Atmospheric Science Institute of CyberScience. The Pennsylvania State University

March 20, 2019

- Diffusion Forecast: Probabilistic prediction of deterministic dynamics and Itô diffusion processes.
- Data assimilation for specifying initial densities from observed data for diffusion forecast.

Suppose the variables of interest $x(t) \in \mathcal{M} \subset \mathbb{R}^n$ satisfy,

$$dx = a(x)dt + b(x) dW_t,$$

with distribution characterized by a density function p(x, t) that satisfies a PDE called the Fokker-Planck equation,

$$\partial_t p = -\nabla \cdot (ap) + \frac{1}{2} \nabla \cdot \nabla \cdot (bb^\top p) \equiv \mathcal{L}^* p.$$

Suppose the variables of interest $x(t) \in \mathcal{M} \subset \mathbb{R}^n$ satisfy,

$$dx = a(x)dt + b(x)\,dW_t,$$

with distribution characterized by a density function p(x, t) that satisfies a PDE called the Fokker-Planck equation,

$$\partial_t p = -\nabla \cdot (ap) + \frac{1}{2} \nabla \cdot \nabla \cdot (bb^\top p) \equiv \mathcal{L}^* p.$$

Probabilistic forecasting problem:

Given initial distribution $p(x, 0) = p_0(x)$, one is interested to find

$$p(x,t)=e^{t\mathcal{L}^*}p_0(x)$$

and the corresponding statistics,

$$\mathbb{E}[f](t) \equiv \int_{\mathbb{R}^n} f(x) p(x, t) \, dx.$$

of some function f.

(日) 《聞》 《聞》 《聞》 《日)

Classical solutions:

If one knows a(x), b(x), M, BC's, and IC's, then solve the Fokker-Planck equation with appropriate PDE solvers.

Classical solutions:

- ► If one knows a(x), b(x), M, BC's, and IC's, then solve the Fokker-Planck equation with appropriate PDE solvers.
- ► For high dimensional application, apply Monte-Carlo (ensemble forecasting, see Epstein 1969, Leith 1974), i.e., Sample initial conditions x^k ~ p₀(x) and solve an ensemble of initial value problems,

$$dx = a(x)dt + b(x) dW_t,$$

x(0) = x^k, k = 1,..., K.

Suppose the ensemble solutions at time $t_i > 0$ is denoted by x_i^k , then one can compute the statistics via Monte-Carlo,

$$\mathbb{E}[f](t_i) \equiv \int_{\mathbb{R}^n} f(x) p(x,t) \, dx \approx \frac{1}{N} \sum_{k=1}^N f(x_i^k)$$

Basically, we want to solve a partial differential equation without knowing the equation!

Basically, we want to solve a partial differential equation without knowing the equation!

Assumption: The dynamics are ergodic so \mathcal{M} is the attractor of the system and the sampling measure is the same as the invariant measure. That is, $x_i \sim p_{eq}(x)$, where $\mathcal{L}^* p_{eq} = 0$.

Basically, we want to solve a partial differential equation without knowing the equation!

Assumption: The dynamics are ergodic so \mathcal{M} is the attractor of the system and the sampling measure is the same as the invariant measure. That is, $x_i \sim p_{eq}(x)$, where $\mathcal{L}^* p_{eq} = 0$.

Remark: Our approach is nonparametric in the sense that we do not impose any parametric form in modeling a(x) and b(x). Surely, the method has parameters.

Review of Galerkin method

Had we know the PDE,

$$p(x,t+\tau)=e^{\tau\mathcal{L}^*}p(x,t),$$

one can solve this problem with a Galerkin method. That is, pick a basis function $\psi_j(x)$ depending on the geometry and represent the solutions of the PDE as linear combinations of these basis functions,

$$p(x,t+\tau) = \sum_{j} c_j(t+\tau)\psi_j(x),$$

then solve the system of ODE's,

$$c_k(t+ au) = \sum_j \langle \psi_k, e^{ au \mathcal{L}^*} \psi_j \rangle c_j(t),$$

under the appropriate inner product.

Review of Galerkin method

Had we know the PDE,

$$p(x,t+\tau)=e^{\tau\mathcal{L}^*}p(x,t),$$

one can solve this problem with a Galerkin method. That is, pick a basis function $\psi_j(x)$ depending on the geometry and represent the solutions of the PDE as linear combinations of these basis functions,

$$p(x,t+\tau) = \sum_{j} c_j(t+\tau)\psi_j(x),$$

then solve the system of ODE's,

$$c_k(t+ au) = \sum_j \langle \psi_k, e^{ au \mathcal{L}^*} \psi_j \rangle c_j(t),$$

under the appropriate inner product.

Problem: We don't have $\psi_j(x)$ and we don't know \mathcal{L}^*

Recall of the diffusion maps

We use the diffusion maps¹,² to generate a data driven basis function φ_j. This kernel based method uses the data x_i ~ p_{eq}(x) to approximate eigenfunctions of a weighted Laplacian,

$$\hat{\mathcal{L}} = p_{eq}^{-1} \mathsf{div}(p_{eq}
abla \quad) =
abla \log(p_{eq}) \cdot
abla + \Delta$$

which is the generator of a gradient flow with isotropic diffusion,

$$dx = \nabla \log(p_{eq}) dt + \sqrt{2} dW_t.$$

 With these data-driven basis functions, we represent the solutions of the Fokker-Planck equation as,

$$p(x,t+\tau) = \sum_{k} c_k(t+\tau)\varphi_k(x)p_{eq}(x),$$

where

$$egin{aligned} c_k(t+ au) &=& \sum_j \langle arphi_k p_{eq}, e^{ au \mathcal{L}^*} arphi_j p_{eq}
angle_{p_{eq}^{-1}} c_j(t), \ &=& \sum_j \langle e^{ au \mathcal{L}} arphi_k, arphi_j
angle_{p_{eq}} c_j(t), \end{aligned}$$

Q: How do you estimate $\langle e^{\tau \mathcal{L}} \varphi_k, \varphi_j \rangle_{p_{eq}}$?

If the underlying dynamical system is indeed a gradient flow with isotropic diffusion with invariant density,

$$p_{eq}(x) = \exp(-U(x)/D)$$

where D > 0 is a constant, then diffusion maps will approximate,

$$\hat{\mathcal{L}} = \nabla \log(p_{eq}) \cdot \nabla + \Delta = D^{-1} \nabla U \cdot \nabla + \Delta.$$

and our goal is to approximate the generator

$$\mathcal{L} = D\hat{\mathcal{L}} = \nabla U \cdot \nabla + D\Delta.$$

HW for students: Estimate D from timeseries?

Gradient Flow System³

If $\{\varphi_k\}$ denote a set of orthonormal basis of $\hat{\mathcal{L}}$ under $L^2(\mathcal{M}, p_{eq})$, it is then immediate to see that,

$$e^{\tau \mathcal{L}} \varphi_k = e^{\lambda_k D t} \varphi_k,$$

which means that,

$$\langle e^{\tau \mathcal{L}} \varphi_k, \varphi_j \rangle_{p_{eq}} = e^{\lambda_k D \tau} \delta_{k,j}.$$

The solution of the Fokker-Planck is given as,

$$p(x, t + \tau) = \sum_{k} c_{k}(t + \tau)\varphi_{k}(x)p_{eq}(x)$$
$$= \sum_{k} \sum_{j} \langle e^{\tau \mathcal{L}}\varphi_{k}, \varphi_{j} \rangle_{p_{eq}} c_{j}(t)\varphi_{k}(x)p_{eq}(x)$$
$$= \sum_{k} e^{\lambda_{k}D\tau} c_{k}(t)\varphi_{k}(x)p_{eq}(x)$$

Example

Given data set of x(t) that solves the following chaotic oscillator,

$$\dot{x} = x - x^3 + \frac{\gamma}{\epsilon} y_2,$$

$$\dot{y}_1 = \frac{10}{\epsilon^2} (y_2 - y_1),$$

$$\dot{y}_2 = \frac{1}{\epsilon^2} (28y_1 - y_2 - y_1y_3),$$

$$\dot{y}_3 = \frac{1}{\epsilon^2} (y_1y_2 - \frac{8}{3}y_3).$$

It is well known that for a sufficiently small $\gamma,\epsilon,$ the dynamics can be approximated by $^{4},$

$$dX = X(1-X^2) dt + \sigma dW_t.$$

⁴Givon, Kupferman, & Stuart 2006

◆□> ◆□> ◆目> ◆目> ◆目> ● ● ●

(Loading Video...)

Forecasting moments

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Bayesian filtering problem

Consider now a dynamical system with continuous-time noisy observations

$$dx = -\nabla U(x) dt + \sqrt{2D} dW,$$

$$dz = h(x) dt + \sqrt{R} dW_z.$$

⊡ ▶ < ≣ ▶

-∢ ≣ ≯

Bayesian filtering problem

Consider now a dynamical system with continuous-time noisy observations

$$dx = -\nabla U(x) dt + \sqrt{2D} dW,$$

$$dz = h(x) dt + \sqrt{R} dW_z.$$

The filtering problem is to obtain the following conditional distribution,

$$p(x|z) \propto p(x)p(z|x)$$

and its statistics. Indeed, the un-normalized conditional density, $r(x,t) = p(x,t) \int_{\mathcal{M}} r(x,t) dV(x)$, solves a linear SPDE known as the Zakai equation,

$$dr = \mathcal{L}^* r \, dt + rh^\top R^{-1} dz.$$

Bayesian filtering problem

Consider now a dynamical system with continuous-time noisy observations

$$dx = -\nabla U(x) dt + \sqrt{2D} dW,$$

$$dz = h(x) dt + \sqrt{R} dW_z.$$

The filtering problem is to obtain the following conditional distribution,

$$p(x|z) \propto p(x)p(z|x)$$

and its statistics. Indeed, the un-normalized conditional density, $r(x,t) = p(x,t) \int_{\mathcal{M}} r(x,t) dV(x)$, solves a linear SPDE known as the Zakai equation,

$$dr = \mathcal{L}^* r \, dt + rh^\top R^{-1} dz.$$

Key idea: project this SPDE into the diffusion coordinates.

Evolution of the posterior density

Example filtering the double-well potential with observation function $h(x) = (x - 0.05)^2$.

(Loading Video...)

Evolution of the posterior density

Example filtering the double-well potential with observation function $h(x) = x^2$.

(Loading Video...)

Given data set $x_i \sim p_{eq}(x)$ of the current climate (or equilibrium state) and an external perturbation, δU , on the unknown potential U, compute the response of the statistics as functions of time,

$$\delta \mathbb{E}[A(x)](t) = \mathbb{E}_{p^{\delta}}[A(x)](t) - \mathbb{E}_{p_{eq}}[A(x)], \quad t \geq 0.$$

for functional A.

Given data set $x_i \sim p_{eq}(x)$ of the current climate (or equilibrium state) and an external perturbation, δU , on the unknown potential U, compute the response of the statistics as functions of time,

$$\delta \mathbb{E}[A(x)](t) = \mathbb{E}_{p^{\delta}}[A(x)](t) - \mathbb{E}_{p_{eq}}[A(x)], \quad t \geq 0.$$

for functional A.

Remark: If the dynamical models for the unperturbed system are known, given the functional of the perturbation, one can just apply Monte-Carlo.

Response Problem (climate sensitivity)

Recall the variable bandwidth diffusion kernel⁵, we prove that our discrete diffusion maps with variable bandwidth kernel $K_{\epsilon}(x, y) = \exp(-\frac{||x-y||^2}{\epsilon \rho(x)\rho(y)})$ produces

$$L_{\epsilon}f = \Delta f + 2(1-\alpha)\nabla f \cdot \frac{\nabla q}{q} + (d+2)\nabla f \cdot \frac{\nabla \rho}{\rho} + \mathcal{O}(\epsilon)$$

The key idea is to apply diffusion maps on the data set $x_i \sim p_{eq}(x)$ with the variable bandwith kernel with bandwidth function $\rho(x) = p_{eq}(x)^{-1/2} e^{-\frac{\delta U(x)}{D(d+2)}}$. This allows us to learn the generator corresponding to the perturbed system,

$$dx = -\nabla (U(x) + \delta U(x)) dt + \sqrt{2D} dW.$$

⁵Berry & H, Appl. Harmon. Comput. Anal., 2016 □ → (, , ,) → () → () → ()

Response of the density due to an external forcing

(Loading Video...)

@ ▶ ∢ ≣ ▶

-≣->

Response statistics

Evolution of the moments compared to those of the stochastic Monte-Carlo simulations.

General Itô diffusion processes: $\hat{\mathcal{L}} \neq c\mathcal{L}$ for any $c \in \mathbb{R}$

The Dynkin formula states that for any fcn $f(x) \in C^2(\mathcal{M})$ on compact manifold, the solutions of the backward Kolmogorov of Ito diffusion,

$$u_t = \mathcal{L}u, \quad u(x, t_i) = f(x_i),$$

can be expressed as

$$e^{\tau \mathcal{L}} f(x_i) = \mathbb{E}_{x_i}[f(x_{i+1})],$$

where $t_{i+1} = t_i + \tau$.

General Itô diffusion processes: $\hat{\mathcal{L}} \neq c\mathcal{L}$ for any $c \in \mathbb{R}$

The Dynkin formula states that for any fcn $f(x) \in C^2(\mathcal{M})$ on compact manifold, the solutions of the backward Kolmogorov of Ito diffusion,

$$u_t = \mathcal{L}u, \quad u(x, t_i) = f(x_i),$$

can be expressed as

$$e^{\tau \mathcal{L}} f(x_i) = \mathbb{E}_{x_i}[f(x_{i+1})],$$

where $t_{i+1} = t_i + \tau$. If we define a shift operator $S_{\tau}f(x_i) = f(x_{i+1})$, then

$$e^{\tau \mathcal{L}} f(x_i) = \mathbb{E}_{x_i}[S_{\tau} f(x_i)]$$

which gives a hint that we can approximate $e^{\tau \mathcal{L}}$ with S_{τ} .

Diffusion Forecast

We⁶ approximate $e^{\tau \mathcal{L}}$ with a shift operator S_{τ} defined as follows: $S_{\tau}f(x_i) = f(x_{i+1})$, where $t_{i+1} = t_1 + \tau$. Numerically,

$$\langle e^{\tau \mathcal{L}} \varphi_k, \varphi_j \rangle_{p_{eq}} \approx \langle S_{\tau} \varphi_k, \varphi_j \rangle_{p_{eq}} \approx \frac{1}{N} \sum_{i=1}^N S_{\tau} \varphi_k(x_i) \varphi_j(x_i)$$

= $\frac{1}{N} \sum_{i=1}^N \varphi_k(x_{i+1}) \varphi_j(x_i),$

where $\{x_i\}_{i=1}^N \sim p_{eq}(x)$.

⁶Berry, Giannakis, and H, Phys. Rev. E 2015. 🛛 🗤 🖘 👘 🚛 ୬୦୯୯

Diffusion Forecast

We⁶ approximate $e^{\tau \mathcal{L}}$ with a shift operator S_{τ} defined as follows: $S_{\tau}f(x_i) = f(x_{i+1})$, where $t_{i+1} = t_1 + \tau$. Numerically,

$$egin{aligned} \langle e^{ au \mathcal{L}} arphi_k, arphi_j
angle_{p_{eq}} &pprox \ \langle S_{ au} arphi_k, arphi_j
angle_{p_{eq}} &pprox rac{1}{N} \sum_{i=1}^N S_{ au} arphi_k(x_i) arphi_j(x_i) \ &= \ rac{1}{N} \sum_{i=1}^N arphi_k(x_{i+1}) arphi_j(x_i), \end{aligned}$$

where $\{x_i\}_{i=1}^N \sim p_{eq}(x)$. So all we need is the basis function φ_j which we learn from the diffusion maps and set

$$p(x,t+\tau) \approx \hat{p}(x,t+\tau) := \sum_{k=0}^{M} \sum_{j=0}^{M} \langle S_{\tau}\varphi_{k},\varphi_{j}\rangle_{p_{eq}}c_{j}(t)\varphi_{k}(x)p_{eq}(x),$$

⁶Berry, Giannakis, and H, Phys. Rev. E 2015. 🛛 🗤 🖘 👘 🖉 କର୍ବର

Theorem

Let $p(x, \tau) \in L^2(\mathcal{M}, p_{eq}^{-1})$ for all $t \ge 0$ be the solutions of FP eqn with bounded diffusion tensor, b, and assume that \mathcal{M} is compact. Let $\hat{p}(x, \tau)$ be the approximate solutions from the diffusion forecast method. Then there exists sufficiently large M > 0 and constant C > 0 such that,

$$\mathbb{E}\Big[\|(\pmb{p}(\cdot, au)-\hat{\pmb{p}}(\cdot, au))^2\|^2_{\pmb{p}_{eq}^{-1}}\Big]\leq Crac{ au}{N}.$$

⁷H, Cambridge University Press 2018 (see Chapter 6).

Lorenz model:

$$\dot{x} = \sigma(y-x), \quad \dot{y} = x(\rho-z) - y, \quad \dot{z} = xy - \beta z.$$

(Loading Video...)

Learning from a three-dimensional data $(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))$ whereas the intrinsic dynamical system is two dimensional (θ, ϕ) .

(Loading Video...)

Specifying initial conditions given new observations

If the observation y is not noisy, $p(x) = \delta_y(x)$. Then the initial coefficients are given as,

$$c_k(0) = \langle p, \varphi_k \rangle = \varphi_k(y).$$

So all we need to do is to extend the diffusion maps basis on new data point y. This can be done using the Nystrom extension⁸

⁸Yang & H, J. Nonlinear Science, 2018.
⁹Berry & H, Physica D, 2016.

Specifying initial conditions given new observations

If the observation y is not noisy, $p(x) = \delta_y(x)$. Then the initial coefficients are given as,

$$c_k(0) = \langle p, \varphi_k \rangle = \varphi_k(y).$$

So all we need to do is to extend the diffusion maps basis on new data point y. This can be done using the Nystrom extension⁸

For discrete-time noisy observations y with likelihood function p(y|x), we can apply the Bayes's theorem⁹ to estimate initial density,

 $p(x|y) \propto p(x)p(y|x),$

where the prior densities are from the diffusion forecast,

$$p(x) = \sum_{j} c_{j}(t)\varphi_{j}(x)p_{eq}(x)$$

⁸Yang & H, J. Nonlinear Science, 2018.

⁹Berry & H, Physica D, 2016.

Forecasting barotropic modes of QG turbulence¹⁰

Model: 2-layer QG with baroclinic instabilities. Parameter $F \propto L_D^{-2}$.

Diffusion forecasting is trained on noisy Fourier modes corresponding to 36 spatially uniform grid points. Training is performed on 5000 noisy data points (with time-delay embedding) while the forecast verification is done on separate 4000 data points.

We apply the Bayesian filter to initialize the forecast densities.

We compare it to:

- SPEKF: A stochastic parametric modeling approach with additive and multiplicative noises.
- persistent forecast: Tomorrow's forecast is exactly equal to today observation.

¹⁰Berry & H, Physica D, 2016.

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへで

Application: Forecasting the El Nino Index 3.4

Left: Taken from comment to our paper by Kondrashov, Chekroun, & Ghil Phys. Rev. E, 2016. They published their modeling approach in PNAS 2011.

Right: Diffusion forecast is trained on only 600 data point (monthly between Jan 1950-Dec 1999. Forecast verification on Jan 2000-march 2014. Berry, Giannakis, & H Phys. Rev. E 2016.

14-month lead-time forecast skill: PNF RMSE 0.86, PC 0.52 Diffusion Forecast RMSE 0.77, PC 0.64.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example: Lorenz-96 6D ¹¹

Note: Training data $N = 10^6$. There are still plenty of room for improvement for high-dimensional problems.

¹¹Yang and H, J. Nonlinear Science, 2018.

References:

- ► J. Harlim and H. Yang, *Diffusion forecasting model with basis functions* from *QR decomposition*, J. Nonlinear Sci 28, 847-872, 2018.
- T. Berry and J. Harlim, Forecasting turbulent modes with nonparametric models: Learning from noisy data, Physica D 320, 57-76, 2016.
- T. Berry and J. Harlim, Nonparametric uncertainty quantification for stochastic gradient flows, SIAM J Uncertainty Quantification 3(1), 484-508, 2015.
- T. Berry and J. Harlim, Nonparametric forecasting of low-dimensional dynamical systems, Physical Review E 91, 032915, 2015.
- J. Harlim, Data-driven computational methods: Parameter and operator estimations, Cambridge University Press, UK, 2018. (with supplementary MATLAB codes for diffusion forecast)

Collaborators:

- ▶ Tyrus Berry, Dept. of Mathematical Sciences, George Mason University.
- Dimitrios Giannakis, Courant Institute, New York University.
- Shixiao Jiang, Dept. of Mathematics, The Pennsylvania State University.
- Haizhao Yang, Dept. of Mathematics, National University of Singapore.