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Today’s program

I Example 3: Human population models
I Adaptive nonparametric estimation

• Lepski’s principle: soft heuristics
• The Goldenshluger-Lepski method without pain  afternoon

discussion session/Lecture III



Informal structure of the study

I Statistical setting: We have (i) data ZN and (ii) a parameter
of interest f . Asymptotics are taken as N →∞.

I Structure of the problem:

HN(ZN) = 0 for some SDE HN ,

ZN → ξ limiting object,

H(ξ, f ) = 0 for some PDE H.

I Objective: recover f from the observation of ZN (or a proxy
ZN of ZN) .



Example 3 (Lecture I continued): Human population models

Statistical experiments and methodology

Adaptive nonparametric estimation
Nonparametric estimation



Paradigmatic examples

1. Cell division: blue growth-fragmentation models
I Age-structured models and the renewal equation
I Size-structured models

2. General bifurcating models

3. Human population models for demography
I Cohort effects in human mortality
I Towards nonlinearity

4. Models of interacting neurons  Lecture IV
I Spikes models
I Hawkes models

5. More nonlinear models in a mean-field limit  Lecture IV



Motivation: improving mortality estimates
I Mortality table = mortality rates for several age classes (with

length one or several years), at several periods in time (usually
each year)

I Mortality tables  age shape of mortality and dynamics over
time

Figure: Left: Mortality rate, 2008, France, as a function of age
(log-scale).Right: Mortality table by age and time



A (very) brief history of demographics

I The first mortality table appeared in 1662 by John Graunt  
estimation of death probabilities as a function of age.

I 1865: graphical formalizations of life trajectories within a
population by Lexis and his contemporaries.

Figure: Examples of the so-called ’Lexis Diagram’

I The first demographers understood that it is crucial to (i) keep
a non-homogeneous picture and (ii) the measurement of the
mortality rate depends on an underlying population dynamics.



Recent awareness about anomalies

I Cohort effects have long fascinated demographers.

Figure: Left: monthly births in France. Right: artefact (?) cohort effects
in mortality improvements from crude tables of the Human Mortality
Database.

I Richards (2008) suggested that cohort effects could be
artefacts caused by anomalies in the calculation of death rates
due to shocks in birth patterns.



Recent awareness about anomalies

I Cairns et al. (2016) confirm Richards’ conclusions with
England and Wales data completed on monthly fertility data.

I Boumezoued (2016) aggregates the (HMD) database and the
(HFD) database and suggests that these anomalies are
universal.

Figure: Mortality rates estimates before (left) and after (right)
correction from Boumezoued (2016).



Example 3: identification of the objects of interest

I F ,B : R+ × R+ → R+ model parameters.

I F (t, a): fertility rate of the population with age a at time t.

I B(t, a): mortality rate of the population with age a at time t.

I Z0 ∈MF : initial age distribution of the population at time
t = 0.



Example 3: evolution equation

I
(
Ai (t)

)
1≤i≤Nt

= all the ages of the population at time t.

I Zt =
∑Nt

i=1 δAi (t) with Nt = 〈Zt , 1〉.
I Associated SDE

Zt = τtZ0

+

∫ t

0

∑
i≤〈Zs−,1〉

∫
0≤θ≤F (s,ai (Zs−))

δt−sQ(ds, di , dθ)

−
∫ t

0

∑
i≤〈Zs−,1〉

∫
0≤θ≤B(s,ai (Zs−))

δai (Zs−)+t−sQ̃(ds, di , dθ)

I Q, Q̃ independent Poisson random measures, intensity
ds
(∑

k≥1 δk(di)
)
dθ.



Microscopic evolution equation
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Figure: Left: Sample path of Z0(da) and its evolution without births.
Right: Sample path of (Zt(da), t ∈ [0,T ]).



Large population limit

I Large population limit approach: Z0  Z0(N), N ≥ 1, with
〈Z0(N), 1〉 ≈ N.

I N reminiscent of a (large) population size.

I Renormalisation: Zt  Zt/N =: ZN
t (thus ZN

0 = N−1Z0(N))
yields

ZN
t = τtZ

N
0

+N−1

∫ t

0

∑
i≤〈NZN

s−,1〉

∫
0≤θ≤F (s,ai (Z

N
s−))

δt−s(da)Q(ds, di , dθ)

−N−1

∫ t

0

∑
i≤〈NZN

s−,1〉

∫
0≤θ≤B(s,ai (Z

N
s−)

δai (ZN
s−)+t−s(da)Q̃(ds, di , dθ).



Example 3: large population limit

I N →∞ abstract asymptotic parameter.

I Reminiscent of a population size : 〈NZN
t , 1〉 ≈ N for every

t ∈ [0,T ].

I T is fixed throughout!

I If ZN
0 ≈ g0(a)da, then ZN

t (da) ≈ ξt(da) = g(t, a)da.

I g(t, a) weak solution to the McKendrick & Von Foerster
equation

∂
∂t g(t, a) + ∂

∂ag(t, a) + B(t, a)g(t, a) = 0,

g(0, a) = g0(a), g(t, 0) =
∫
R+

F (t, a)g(t, a)da.



Example 3: large population limit

We can identify the following objects

I N →∞ is arbitrary, reminiscent of the population size
〈ZN

t , 1〉 for every t ∈ [0,T ].

I ZN is (ZN
t )0≤t≤T and we observe ZN = ZN .

I f is any of the functions (t, a) 7→ g(t, a),F (t, a) or B(t, a).

I HN and H are the SDE and the McKendrick & Von Foerster
equation.
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From ZN to a statistical experiment.

I We have a stochastic model (Zt)1≤t≤T , as a time evolving
point measure where either

• 〈ZT , 1〉 is large when T is large, T deterministic or random
(stopping time).

• T is fixed but Zt = ZN
t depends on a renormalisation

parameter N and 〈ZN
t , 1〉 is large for every t when N is large.

I N →∞ asymptotic parameter.

I We write ZN for (Zt)0≤t≤T (N) or (ZN
t )0≤t≤T .

I We extract from ZN an observation ZN .



The experiment generated by ZN

I ZN generates (a sequence of) statistical experiment{
PN
B,k ,B ∈ B, k ∈ K

}
N≥1

B: parameter of interest, k nuisance parameter (possibly
known, usually functional).

I B : [0,∞)× [0,∞)→ [0,∞) belongs to a functional class.

I We need a methodology for recovering B non-parametrically.



Nonparametric estimation

I Experiment: EN =
{
PN
B,k ,B ∈ B, k ∈ K

}
.

I Objective: recover B(t, a) with B ∈ B from data ZN .

I B̂N(t, a) = B̂N
(
ZN , (t, a)

)
estimator of B(t, a).

I Reconstruction criterion

RN(B̂N(t, a),B) = sup
B∈B,k∈K

EN
B,k

[(
B̂N(t, a)− B(t, a)

)2]
I vN → 0 is an admissible rate of of convergence for estimating

B(t, a) over B if there exists B̂N(t, a) such that

sup
N

v−2
N R

N(B̂N(t, a),B) <∞.



Nonparametric estimation

I Sometimes, we only require the (weaker) tightness of(
v−1
N

(
B̂N(t, a)− B(t, a)

))
N≥1

,

uniformly in B ∈ B, meaning

sup
B∈B,k∈K

PN
B,k

(
v−1
N

∣∣B̂N(t, a)− B(t, a)
∣∣ ≥ K

)
→ 0, K →∞.

I B̂N
? (t, a) is minimax optimal if

RN(B̂N(t, a),B) ≈ inf
F
RN(F ,B) as N →∞,

infimum taken over all estimators F of B(t, a) from ZN .
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Nonparametric estimation in density estimation

I Let us consider an apparently different problem: estimate a
probability distribution g(t, a)dtda from a (IID) drawn

ZN ↔ (T1,A1), . . . , (TN ,AN).

I Statistical objective: pointwise estimation of g(t, a).

I Assumption: g ∈ L∞loc+ local smoothness properties.

I Anisotropic Hölder space Hα,β:

g ∈ Hα,β ⇐⇒
{

t 7→ g(t, a) ∈ Hα, ∀a,
a 7→ g(t, a) ∈ Hβ, ∀t,

where Hs is the usual (univariate) Hölder space.(
x 7→ f (x) ∈ Hs , s = n + {s}, n integer, 0 < {s} ≤ 1 iff

‖f ‖L∞ + supx,y
|f (n)(y)−f (n)(x)|
|y−x|{s} <∞.

)



Preparation: anisotropic estimation

I Kernel reconstruction: Pick a smooth and compactly
supported product kernel K

K (t, a) = K (1)(t)K (2)(a).

I L1-normalisation: for h = (h1, h2), hi > 0:

Kh(t, a) = (h1h2)−1K (1)
(
h−1

1 t
)
K (2)

(
h−2

2 a
)
.

I Kernel estimation

ĝN
h (t, a) =

∫ T

0

∫
R+

Kh(t − s, a− u)ZN(ds, du).

where ZN(ds, du) = N−1
∑N

i=1 δ(Ti ,Ai )(ds, du).



Nonparametric estimation in density estimation

I Error analysis: standard bias + variance decomposition.

I Bias analysis:

gh(t, a) =

∫ T

0

∫
R+

Kh(t − s, a− u)g(s, u)duds.

I Assume g ∈ Hα,β. Then∣∣g(t, a)− gh(t, a)
∣∣ . |g |Hα,β (h

α∧(L+1)
1 + h

β∧(L+1)
2 )(

L = order of the kernel:
∫
x`K (x)dx = 1{`=0} for ` = 0, . . . , L.

)
I Remark: different (equivalent) choices for |g |Hα,β .



Nonparametric estimation in density estimation

I Variance analysis:

Var
(
ĝN,h(t, a)

)
≤ N−1

∫ T

0

∫
R+

Kh(t − s, a− u)2g(s, u)dsdu

≤ N−1‖Kh‖2
L2 |g |L∞loc

= |K |22|g |L∞loc
N−1h−1

1 h−1
2 .

I Window optimisation h = h? yields error bound

sup
g

E
[(
ĝN
h?(t, a)− g(t, a)

)2]
. N−2s(α,β)/(2s(α,β)+1)

with effective smoothness

1

s(α, β)
=

1

α
+

1

β
.

I Supremum over (local) Hölder balls, minimax optimality.



Towards adaptive estimation

We have established

E
[(
ĝN
h?(t, a)− g(t, a)

)2
]
.
(
Kh1,h2 ? g(t, a)− g(t, a)

)2
+
( 1√

Nh1h2

)2

=: Bh(g) + VN
h

I Oracle estimation: look for h = ĥ(ZN) so that

E
[(
ĝN
h?(t, a)− g(t, a)

)2]
. inf

h∈H

(
Bh(g) + VN

h
)
.

I Need H rich enough so that it can mimick the optimal
bandwidth h? if g ∈ Hα,β.

I If (α, β) unknown  adaptive estimation  Lepski’s principle.
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