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Today's program

» Example 3: Human population models
» Adaptive nonparametric estimation

e Lepski's principle: soft heuristics
e The Goldenshluger-Lepski method without pain ~ afternoon
discussion session/Lecture |l



Informal structure of the study

» Statistical setting: We have (i) data ZV and (ii) a parameter
of interest f. Asymptotics are taken as N — oo.

» Structure of the problem:

Hn(ZN) =0 for some SDE Hy,
ZN = ¢ limiting object,
H(E, f) =0 for some PDE H.

» Objective: recover f from the observation of ZN (or a proxy
ZN of ZNY .



Example 3 (Lecture | continued): Human population models



Paradigmatic examples

1. Cell division: blue growth-fragmentation models
» Age-structured models and the renewal equation
» Size-structured models

2. General bifurcating models

3. Human population models for demography

» Cohort effects in human mortality
» Towards nonlinearity

4. Models of interacting neurons ~» Lecture IV
» Spikes models

» Hawkes models

5. More nonlinear models in a mean-field limit ~+ Lecture IV




Motivation: improving mortality estimates

» Mortality table = mortality rates for several age classes (with
length one or several years), at several periods in time (usually
each year)

> Mortality tables ~~ age shape of mortality and dynamics over
time

HMD period death rates (France)
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Figure: Left: Mortality rate, 2008, France, as a function of age
(log-scale).Right: Mortality table by age and time



A (very) brief history of demographics

> The first mortality table appeared in 1662 by John Graunt ~
estimation of death probabilities as a function of age.

» 1865: graphical formalizations of life trajectories within a
population by Lexis and his contemporaries.
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Figure: Examples of the so-called 'Lexis Diagram’

» The first demographers understood that it is crucial to (i) keep
a non-homogeneous picture and (ii) the measurement of the
mortality rate depends on an underlying population dynamics.



Recent awareness about anomalies

» Cohort effects have long fascinated demographers.

| Generation ~ 1915 | | Generation ~ 1920 |

Number of births by month (France) Mortality improvements on HMD data (France)
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Figure: Left: monthly births in France. Right: artefact (?) cohort effects
in mortality improvements from crude tables of the Human Mortality

Database.

» Richards (2008) suggested that cohort effects could be
artefacts caused by anomalies in the calculation of death rates

due to shocks in birth patterns.



Recent awareness about anomalies

» Cairns et al. (2016) confirm Richards’ conclusions with
England and Wales data completed on monthly fertility data.

» Boumezoued (2016) aggregates the (HMD) database and the
(HFD) database and suggests that these anomalies are

universal.
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Figure: Mortality rates estimates before (left) and after (right)
correction from Boumezoued (2016).



Example 3: identification of the objects of interest

v

F,B:R; xRy — Ry model parameters.

v

F(t,a): fertility rate of the population with age a at time t.

v

B(t, a): mortality rate of the population with age a at time t.

v

Zy € Mg initial age distribution of the population at time
t=0.



Example 3: evolution equation

> (A"(t))1<i<Nt = all the ages of the population at time t.
> Zp = SN Gy with N = (Z;,1).
» Associated SDE

Z = 1t

[
[

> Q, (5 independent Poisson random measures, intensity
ds (Y1 Ok(di))db.

d¢—sQ(ds, di, db)

i<(Zs—,1) /0<9<F(s7a,-(25_))

8oz )45 Q(ds, di, dO)

i<(Zs—,1) /0§9§B(s7a;(25))



Microscopic evolution equation

al

Zy(da)

Figure: Left: Sample path of Zy(da) and its evolution without births.
Right: Sample path of (Z;(da), t € [0, T]).



Large population limit

» Large population limit approach: Zy ~~ Zg(N), N > 1, with
(Zo(N),1) =~ N.

» N reminiscent of a (large) population size.

» Renormalisation: Z; ~ Z;/N =: ZN (thus Z}Y = N~1Z,(N))

yields
zl = nz
+N~ / Z / 5t s(da)Q(ds, di, df)
0<0<F(s,a;(ZN)

<(NZV 1)

- / > /0<9<B( ) 0ai(z y+1—s(da) Q(ds, i, d).
53

(NZVN 1)



Example 3: large population limit

v

N — oo abstract asymptotic parameter.

» Reminiscent of a population size : (NZN,1) ~ N for every
tel0, T]

T is fixed throughout!

If ZV =~ go(a)da, then ZN(da) =~ &:(da) = g(t, a)da.
g(t,a) weak solution to the McKendrick & Von Foerster
equation

v

v

v

%g(tv a) + %g(t7 3) + B(t> a)g(tv a) =0,

g(0,2) = go(a) = Jg, F(t,a)g(t, a)da.



Example 3: large population limit

We can identify the following objects
» N — oo is arbitrary, reminiscent of the population size
(ZN.1) for every t € [0, T].
» ZN'is (ZN)o<t<T and we observe ZN = ZN,
» f is any of the functions (t,a) — g(t, a), F(t,a) or B(t, a).
» H"N and H are the SDE and the McKendrick & Von Foerster
equation.



Statistical experiments and methodology



From Z" to a statistical experiment.

v

We have a stochastic model (Z;)1<:<7, as a time evolving
point measure where either
e (Z71,1) is large when T is large, T deterministic or random
(stopping time).
e T is fixed but Z; = Z! depends on a renormalisation
parameter N and (ZN 1) is large for every t when N is large.

» N — oo asymptotic parameter.

v

We write ZN for (Zt)ogth(N) or (Z!V)OStST-

» We extract from ZV an observation ZN.



The experiment generated by Z"

» ZN generates (a sequence of) statistical experiment
N
{PBs. BEB keK}y,

B: parameter of interest, k nuisance parameter (possibly
known, usually functional).

» B:[0,00) x [0,00) — [0,00) belongs to a functional class.

» We need a methodology for recovering B non-parametrically.



Nonparametric estimation

» Experiment: EN = {ng, BeB ke IC}.
» Objective: recover B(t,a) with B € B from data ZV.
> BN(t,a) = BN(2V,(t,a)) estimator of B(t, a).

» Reconstruction criterion

RN(BN(t,a),B) = sup EN, [(BN(t,a) - B(t,a))’]
BeB.kek

» vy — 0 is an admissible rate of of convergence for estimating
B(t, a) over B if there exists BN(t,a) such that

sup vﬁzRN(gN(t, a),B) < oc.
N



Nonparametric estimation

» Sometimes, we only require the (weaker) tightness of

(vi' (BM(t,8) = B(t,2))) sy
uniformly in B € B, meaning

sup PN (vyt|B"(t,a) — B(t,a)| > K) = 0, K — <.
BeB,kek

» BN(t,a) is minimax optimal if

RN(BN(t,a),B) ~ ir;fRN(F,B) as N — oo,

infimum taken over all estimators F of B(t,a) from ZN.



Adaptive nonparametric estimation
Nonparametric estimation



Nonparametric estimation in density estimation

» Let us consider an apparently different problem: estimate a
probability distribution g(t, a)dtda from a (IID) drawn

ZN o (T1, AL, . (T, An).

» Statistical objective: pointwise estimation of g(t, a).

» Assumption: g € L;> + local smoothness properties.

» Anisotropic Holder space H®5:

o t— g(t,a) € H*, Va,
geN {a»—>g(t,a)€7—lﬁ, Vt,
where H* is the usual (univariate) Holder space.

(x — f(x) € H°,s = n+ {s}, ninteger,0 < {s} < 1iff

[F) (y)— £ (x)

1]l + sup,,, O < o0



Preparation: anisotropic estimation

» Kernel reconstruction: Pick a smooth and compactly
supported product kernel K
K(t,a) = KD (1)K (a).
» L['-normalisation: for h = (hy, ho), h; > O:
Kn(t,a) = (hih2) T KM (h71t) K@ (h52a).

» Kernel estimation

-
g\ (t,a) :/ / Kn(t —s,a— u)ZN(ds, du).
0o JRr,

where ZN(ds, du) = N1 SN, 3(T;,A)(ds, du).



Nonparametric estimation in density estimation

v

Error analysis: standard bias + variance decomposition.

v

Bias analysis:

.
gh(t,a):/ / Kn(t — 5,2 — u)g(s, u)duds.
o Jr,

v

Assume g € H*?. Then

(h?A(LH) i th(LJrl))

lg(t,a) — gn(t,a)| S |glpes

(L = order of the kernel: [ x*K(x)dx = 1{y_¢} for £=0, ..., L.)

Remark: different (equivalent) choices for |g|a.s-

v



Nonparametric estimation in density estimation
> Variance analysis:

-
Var (gn,n(t, a)) < Nl/ / Kn(t —s,a — u)?g(s, u)dsdu
0o Jry

< N7HIKnllolgliy = |KIZlglge N hy byt

loc

» Window optimisation h = h* yields error bound

sup E[ (B (t,a) — g(t,a))%] < N2/ (s(ep)+1)
g

with effective smoothness
1 1 1

s@p) a B

» Supremum over (local) Holder balls, minimax optimality.



Towards adaptive estimation

We have established

E[(E/ﬂ,(t, a) — g(t, a))z} S (Knyn, < 8(t,a) — g(t, a))2 + (\/ﬁ)z
=: Bn(g) + Vi)

» Oracle estimation: look for h = h(ZN) so that
~ 2 :
E[(gh(t,2) — g(t,2))"] < inf (Ba(g) +V3).

> Need H rich enough so that it can mimick the optimal
bandwidth h* if g € H*P.

» If (o, B) unknown ~~ adaptive estimation ~~ Lepski's principle.
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