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Informal structure of the study

» Statistical setting: We have (i) data ZV and (ii) a parameter
of interest f. Asymptotics are taken as N — oo.

» Structure of the problem:

Hn(ZN) =0 for some SDE Hy,
ZN = ¢ limiting object,
H(E, f) =0 for some PDE H.

» Objective: recover f from the observation of ZN (or a proxy
ZN of ZNY .



Today's program

» Bias sampling for growth-fragmentation models

e Age model: many-to-one formulas.

e Size models steady-state approximation.
» Human population models and nonlinear extensions
» Nonlinear models and open questions

e Models of interacting neurons
e More nonlinear models in a mean-field limit



Bias sampling
Age dependent model
Size model: estimation at a large fixed time in a proxy model



Age dependent division rate B(a)

v

The associated deterministic model is
O:g(t,a) + 0ag(t,a) + B(a)g(t,a) = 0
8(0,2) = go(a), &(t,0) =2 [ B(a)g(t, a)da.
» We are interested in recovering a — B(a) from data

(Zt)o<t<T or ZT

v

Zy = M S0 with g(t,) = E[Z]].
Heuristically Zr ~ g(T,-) when T is large.
N =E[(Z7,1)] 5 00 as T — occ.

v

v



Observation scheme

» We observe (Z:)o<¢<T OF Z7.

» Tree representation:
Tr={ueT b, <T}=TrUdTr,

Tr={ueT,d, <T}
OTr ={ueT,b, <T <dy}.

v

We have the correspondence

(Ze)o<e<T > {¢] = min(dy, T) — by, u € Tr},

T < {CLT,U S 87}}

v

Additional difficulty: bias selection.

v

Recovering strategy: many-to-one formulae.



Observation schemes 7+ U & T+

)

Al

Figure: A sample path of Z;(da)o<i<T with B(a) = a® and T =17.




Estimation of B(a) from Tt

v

Many-to-one formula: For nice test functions ¢:

-
E[ Y )] = / e E[o(x(s))He (x(s))] ds

u€7°—7' 0

v

x(t): a tagged branch picked at random on the tree.
We have E[|77|] ~ kge*eT and thus

v

N = Ng ~ e8T depends on B itself!

v

Ag: Malthus parameter, related to x and Hp.
Hg(a) explicit: fy,(a) = 2e~*82fg(a).

We have all the ingredients needed for a law of large numbers.

v

v



Estimation of B(a) from Tt

v

fa(a) = B(a)exp (= [~ B(s)ds).

Law of large numbers

1 p [ s
raD I OR /O H(2)2657f5(3)da

u€7°-T

v

Rate of convergence: (e)‘BT)l/2 = N/2 in probability.

v

v

Rate heavily parameter dependent.

v

Proof: establish rates of convergence in the many-to-one
formula for test functions on forks ¢((y,, () for u,v € T+ +
geometric ergodicity.

We meet the same difficulties as for BMC models.

v



Estimation of B(a) from Tt

» We can find a fast converging preliminary estimator :\\T of A\g.
> Set

T ey 37T Kh(a = Cu)
L= T Eety 26771 <a)

By (a)

2a+1)

» For h=h"(a) = (exp(/):T))fl/( , we have the weak

boundedness of

Na/(2oc+1) (/B\],:,—T(a)(a) . B(a))

uniformly over BN H* for appropriate B.
» The rate is nearly minimax.

» Open problem: we do not have adaptation, for lack of
concentration inequalities.



What if data are taken from O 77 solely?

» By another many-to-one formula, we have for good test
functions ¢

oTr| ™t u L - ABBM
077 ue}@jﬂso(cwzxs /0 Ha)e B da

= 2)\3/ gp(a)e’\Bae_-ﬁJa B(s)ds g5,
0
» We still have a N'/2-rate of convergence (in probability).

» We retrieve an ill-posed problem of order 1, leading to
convergence rate

Ng/(2a+3)

but not No/(2a+1)!



The age dependent model, simulated data

T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4

Figure: Reconstruction of B over D = [0.1, 4] with 95%-level confidence
bands constructed over M = 100 Monte-Carlo trees. In bold red line:

x ~ B(x); in bold blue line: fy,; in blue line: fg. Left: T = 15. Right:
T =23.



Size dependent division rate B(x)

v

The associated deterministic model is
9:g(t,x) + 0« (k(x)g(t, x)) + B(x)g(t, x) = 4B(2x)g(t, 2x)
g(0,x) = go(x), &(t,0) = 0.

» We are interested in recovering x — B(x) from terminal data

Z1 <— 0Tt solely.

v

Zy = M Ox o) with g(t, ) = E[Z]].
Heuristically Z7 ~ g(T,-) when T is large.
N =E[(Z7,1)] 5 00 as T — oc.

This is too difficult!

v

v

v



Alternate strategy: “if the data don't fit, change the datal!”

» Represent the solution of the transport-fragmentation
equation in a stationary regime.

» Obtain a reconstruction formula for B(x) via this
representation in terms of the steady-state or stationary
density of the model.

» Postulate a proxy model where one observes exactly a drawn
from the stationary density.

» Transfer standard nonparametric estimation techniques in this
setting.



Solution by stable distribution

v

Start with the transport-fragmentation equation (k(x) = 7x)

Org(t,x) + Ox (7'xg(t7 x)) + B(x)g(t,x) = 4B(2x)g(t,2x)

v

Ansatz: g(t,x) = e N(x) (A = A\g: Malthus parameter).

Ik (Tx N(x)) + (A + B(x)) N(x) = 4B(2x)N(2x) |

v

Steady-state approximation: g(T,x) =~ e*T N(x) when
T — oo with explicit (fast) rates of convergence.

v

Interpretation: N(x) stationary size distribution of a cell in a
stationary regime.



A proxy statistical model

» Yields a strategy for the nonparametric estimation of B:
1. Extract from Z7r a “sample” Xi,..., X, of cell sizes.
2. Postulate the approximation

P(X; € dxi,..., X, € dxp) = @71 N(x;)dx;.

If n — oo but n < N, hope for a chaos propagation property.
3. Recover B through the representation

L(N) = £(BN),
_eL(N)
B=—n—
with

L(9)(x) = Ox(mxp(x)) + Ap(x),
L(p)(x) = 4p(2x) — p(x).
» The operator L(-) has ill-posedness degree of order 1. The
operator £ is “nicer"” .



Growth-fragmentation: a word of conclusion

’ data ‘ Size model ‘ Age model
proxy model | n=®/(22+3) 4 3daptation irrelevant
87—_,_ 7 (e)\BT)—Oc (201"1‘3)
genealogical | n=/(a+1) 4 adaptation | n=®/(22+1) 4 adaptation
,7°.T ? (e)\BT)—a/(2a+1)




Bias sampling

Age dependent model

Size model: estimation at a large fixed time in a proxy model

Large population models

Nonlinear extensions, open questions

Models of interacting neurons

More non-linear models in a mean-field limit
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Construction of the microscopic model

> b, p: Ry x Ry — R4 model parameters.

» b(t,a): fertility rate of the population with age a at time t.
p(t, a): mortality rate of the population with age a at time t.

» Zy random variable with value in Mg, the set of finite point
measures on R : initial age distribution of the population at
time t = 0.



Microscopic evolution equation

» Evolution equation for t € [0, T]:

z) = n.z}

+N~ / > / 6t—s(da)Qu(ds, di, db)
0<0<b(s,a;(ZN))

<(zN 1)

- A Z /0<9<Msa(Z ) a‘(zs_)His(da)QQ(dS,dI’de)

<(zM 1)

» @Q;: two independent random Poisson measures on
Ry x N x Ry with intensity dt( )", 0x(di))d6.



Microscopic evolution equation

al

o :
Zy(da) /
> =T =T =T I

0 t 0 T

Z7(da)

Figure: Left: Sample path of NZ(da) with N = 3 and its evolution
without births. Right: Sample path of (NZN(da), t € [0, T]).



Large population limit

v

N — oo abstract asymptotic parameter.

» Reminiscent of a population size : (NZN,1) ~ N for every
tel0, T]

T is fixed throughout!

If ZV =~ go(a)da, then ZN(da) =~ &:(da) = g(t, a)da.
g(t,a) weak solution to the McKendrick & Von Foerster
equation

v

v

v

2g(t,a)+ Zg(t,a) + p(t,a)g(t,a) =0,

g(0,a) = go(a), fR g(t,a)da.



|dentifiability of the parameters

v

Under a suitable approximation Zé\’ ~ ¢ ~- identification of ¢.

v

Need to understand how Zé\’ ~ ¢ propagates to ZN ~ g(t,-)
for t € [0, T].

Claim: Under “suitable propagation”, we can identify g from
zN.

Claim: Likewise, we can identify z from ZN.

v

v

We cannot identify b from ZN for lack of injectivity of b — g.

v



First estimators

» Statistical objective: estimate g(t,a) and pu(t, a) from data
(zN,te o, T)).

» First kernel estimator of g(t, a):

T
Eﬁrel(ta a) _ / / Kh(t — S,a— U)ZSN(dU).
0 JRy4

> We will see that both bias and variance of gf™**(t, a) behave

poorly!



First estimator of the mortality rate u

» Extract from ZV the mortality process

N(dt,da) = 6rn T AN):

k>1

(TN, AN) = (time of death, age at death) of the k-th
occurence of mortality.

> First kernel estimator of u:

foT fn@ Kn(t —s,a— u)N(ds, du)
g(t,a)

Ay (e 2) =

given an estimator of g(t, a) of g(t, a).

» bias of Aprel(t, a) behaves poorly + inherits of the possible

defects of g(t, a).



Holder regularity of the limit

» Look for the regularity of g as the solution of the Mc
Kendrick & Von Foerster equation:

%g(t, a) + %g(t’ a) + M(tv a)g(t, a) =0
g(0,a) = ¢(a), g(t,0) fR g(t,a)da.

» Assumption: b€ HP e HO, ¢ € HY for some
a>0,>0,v>0,0>0,v>1

» Theorem

We have

gl{ <1 e erin(a,ﬂ,w—‘—l.&),min(a,ﬁ’,v—i—lﬁ)
a

and
gliasyy € PO LA max(min(3.01).0)



Holder regularity of the limit

D,

| .
0 T t
> &r(da) = g(T,a)da
Figure: g € Hmin(@B:y+1.0),min(e.5,9+1,9) on D) and
ge erin('y+1,6),max(min(7,5+1),§) on Dy.




Holder regularity of the limit

> “Improve” the smoothness of g ~» change of coordinates.
» With ¢(t,a) = (t,t — a), we have

’DLi}ﬁL:DL and Duﬁﬁuz{a,<0,0§t§ T},

» Define g via

8(t,2) = Zop(t,a)]

» Theorem
We have (with g(t,a') = g(t, t — a'))

E(t, a/)1{0<a’<t} c /Hmin('y—s—l,é—o—l),min(a.ﬂ.b/—o—lﬁ)

and
g(t, a/)1{3,<0} € Hmin(y+1,0+1),max(min(y,6+1),6)



Reconstruction of g
» Estimate g on Dy = {(t,a) € (0, T) x (0, amax), t < a} and
Dr ={(t,a),0 < a<t< T} separately.
Prel (t,a) / / Kn(t —s,a— u) ZN(du)ds.
Ry

» We estimate g(t, a) in the direction suggested by g(t, a) in
order to benefit from its smoothness:

;
B (ea) = [ Kule—s(ems) — (2 0) 2 ()




Reconstruction of d via gy and the process v

» We also estimate p(t, a) = u(t, a)g(t,a)/g(t,a) in the
direction suggested by g(t, a):

nter 1 o Jo Jr, Kn(t=s,(t=5) ~ (a— u)TN(dv)
ENpmw(t,a) = .

B (ta)




Stochastic error analysis for g

» We now look for a control gn(t,a) ~ girse*(t, a), with

.
gn(t,a) = /0 /R Kn(t—s,(t —s) — (a— u))g(s, u)duds.

» We have

BiRr (1, 2) = / / Kt (0= 5) = (a = u) 21 (du)s

» We need
ZN(du)ds ~ g(s, u)duds

in an appropriate sense (related to Kjp) as N — oc.



Toward a coherence property

» How does a suitable assumption on dist(Z}', &) propagates to
dist(ZN,&;) as N — 0o? For which dist(-,-)? (coherence)

» Introduce a pseudo-distance related to a weight function
1 € L*°(R). For a suitable class of functions F let

Wy (u,v) = sup | [ ¥(a)p(a)(u(da) — v(da))] |
peF JRy

» For instance, if F consists of 1-Lipschitz functions,
reminiscent of a weighted Wasserstein-1 distance in the
degenerate case ¢ = 1.



Toward a coherence property

> Assume W, (Z(;V,fo) < wy for some (small) wy.
» Seek a bound of the form

P
Wy (ZY, &) S wn + 6y for t€[0, T]

for some (small) dp that controls the error propagation.

» For dny < wy, we say that we have a coherence property.



Toward a coherence property

» Assumption: (Initial approximation): For some p > 2

E|Wy (23',%0)°] < WI2Z 17/ *wh

with wy — 0 as N — oo.
> 1f Z) = N1V 64, for IID A;, we expect wy ~ N~1/2.



Coherence property

» N(F,]|" |oo,€) minimal number of e-balls in | - |oc norm
necessary to cover F.
» Assume: fol log (L+N(F, | |os, €))de < 0o + ‘some’ stability
for F.
Theorem (Coherence property)
We have for all t € [0, T]

E[Wye (2, €0P] S [R5 2w v NP2




Stochastic error analysis for g

» With G = KO(- —t) and H = K@ (- —(t — a)):
lgn,n(t,a) — gn(t,a)
- / G (s /R Hin(s — u) (ZM(du) — g(s. u))d|
g/o G ()W (o (20, €5)dls

» Using the coherence property we get V(t,a) € D, U Dy

o1 KOBIKO) KO,

E [‘gN,h(t, a) — gn(t, a)‘2} S W’%/ v )

» Appended with the previous bias control



Convergence rates

» Anisotropic rate v(t,a) !

[ min(y+ 1,64+ 1)t + (min(e, B,y +1,0) ¢ on D (t,a)
| min(y+ 1,64+ 1)7t + (max(min(y,d +1),6)"* on Dy(t, a).

Theorem
We have for pointwise (non-adaptive) optimisation of h:

~inter 2 — v(t,a v(t,a
sup E[(gN57(t,a)—g(t,a))°] < (wiy v N H)2 e/t
b?l"’7¢7(t7a)

» Supremum in (t, a) over compacts of D; UDy and in (b, i, ¢)
over (balls) of Holder classes

» This result is not optimal!



Optimal estimation of g (and subsequently 1)

» The stochastic error for §,i{,‘t,fr is stable as hy — 0!
> Gp(t —-) = Gp—o(t —-) = 0+ works! Estimating g(t,-) is a
univariate problem, for each t € [0, T].

» This is no longer true for statistics based on ['V(dt, da): need
a bivariate anisotropic estimator for estimating x(t, a)
together with a choice of direction dictated by g.

» Final estimators

gin(t.a) = /R Kn(a — u) Z(du)
+

and

-
G ) I fR+ Kn(t—s,(t —s)—(a— u))T'Y(du)
R gh(t:a) '




Convergence rates for g 3"

» Our (univariate) rate estimation for g:

Vf(ta a) = min{a, B,v+1, 6}1DL(t,a)+maX(min(77 5"'1)’ 6)1'Du(t7a)'

Theorem
We have, ¥(t,a) € D, U Dy, for pointwise (non-adaptive)
optimisation of h:

sup E[(B55(t,a) — g(t,a))%] S (wh v N2 (B2 @vi(ba)+t),
b7ﬂ7¢7(tva)

» Minimax lower bound: N—2min(v,0)/(2min(,6)+1)

» Minimax optimality: on Dy if 6§ <~y <d+1and on Dy if
d—1<~y<dand > 7.



~fin

Convergence rates for iy}
» Our (bivariate) rate estimation for p: vj(t, a)

_ [ min(y.8) 4 min(a, 5 +16) on Dy
“ | min(y,8)" 4071 on Dy.

Theorem
We have, ¥(t,a) € D, U Dy, for pointwise (non-adaptive)
optimisation of h:

~fin 2 — vy(t,a vy (t,a
sup  E[(fyha(t a) — p(t,a)°] < (wiy v N1 ()bt |
b7“7¢7(t7a)

» Minimax lower bound: N=25(7:0)/(25(v.0)+1) \yith
s(v.0)t=9"t 07

» Minimax optimality: If y <donDyandif y <d<y+1on
D;.



Toward smoothness adaptation

> Let

Wy(E,C) = sup‘/ [l s=u)e(s, ) (€5(d)~Gs(l) ‘ds.

peF

Theorem
Theo Under a proper modification of the initial approximation at
t =0, we have, with €N =TN (resp. ZN) and ¢ = ug (resp. g)

P(W (€Y, Q) > Cum A NY2([loelll1)" + ) < en(, )

with e (e, u) = C'(e€" N (IWlleclivl) ™ 1)—1.

> vyields proper tools to study the deviation of
~fin

gih(t,a) — gn(t, a) and iy5(t, a) — gn(t, a) ~» adaptation.



Oracle inequalities

» Goldenschluger-Lepski ~ data driven bandwidth Ay and hy.

Theorem (Oracle inequality)
We have, for any (t,a) € DL UDy

E[(fu(t.2) ~ £(£2))] < CinfE[(fu(t.2) ~ £(.2)] + ow.

with fy = fm (resp fif5 n(t:a)) and f = g (resp. 1) and
k=nh (resp (h h)), where 6y = O(N~1) up to a constant
depending on bmax, timax, 1, @-
» Adaptation over appropriate domains according to the
preceding results.



Some numerical illustration

> u(t,a) =410"*exp(81073a), b =, ¢(a)da ~ N(60,20?)
conditioned upon [0, 120].

00095
00090
0.0085
00080
00075
0.0070
00065

0.0060

Figure: Unknown g. X-axis: time (0 to 100 years), Y-axis: age (0 to 120
years).



Some numerical illustration

» N =103,5103,10% 210% 510% 10° over 10 MC samples.
» K = K@ = Gaussian kernel.
» Calibration parameters... !

Figure: Rate estimation of g(t, a). (t,a) = (40,60) € Dy (left) and
(t,a) = (60,90) € D, (right). Green = True, Blue = Oracle, Red =
estimator via GL.



Some numerical illustration

» N =103,5103,10% 210% 510% 10° over 10 MC samples.
» K = K@ = Gaussian kernel.
» Calibration parameters... !

Figure: Rate estimation of u(t,a). (t,a) = (40,60) € Dy (left) and
(t,a) = (60,90) € D, (right) Green = True, Blue = Oracle, Red =
estimator via GL.



Conclusion: needed improvements

» Complete minimax optimality (~~ shed light on the
anisotropic structure).

» Study the birth rate estimation b(t, a) (inverse problem)
~> ill — posed. Modification of the problem.

» Generalisation to other transports and some interactions ?



Generalisations: arbitrary transport + interactions

» Can we extend our results to dynamics of the form
5i8(t,a) + 5 (v(a)g(t,a))+
+(u(tsa)+ [, U(a,y)g(t,y)dy)g(t,a) = 0,

g(0,a) = ¢(a), g(t,0) fR g(t,a)da.

» In particular, can we build consistent tests for detecting the
presence of an interaction?



Nonlinear extensions, open questions
Models of interacting neurons
More non-linear models in a mean-field limit



A model of interacting neurons

» Modelling the evolution of the electrical potentials of a system
of N spiking neurons.

» De Masi et al. (2015), Locherbach and Fournier (2015)
following De Masi and Galvez (2013).
» Each neuron spikes randomly with rate B(u) depending on
the membrane potential u of the neuron.
1. At spiking time,
e Spiking membrane is reset to a resting potential (here u = 0).
e Action of chemical synapses increases the potential of other
neurons by N1,

2. Action of electrical synapses synchronises the potentials of the
system.
» We model the distribution of membrane potentials of a system
of N neurons through time.



Example 4: a model of interacting neurons

» (Ui(t))1<t<n = the membrane potentials at time t.
> ZV = NP YL Sy
Associated SDE

z = ¢z~<t>
* So(t—s) — O ) Qi(ds, db
N/ /<9<B(u, zZNY) ( do(t=s) ¢u,.(zs/vi)(t )) ( )

+N/ Z /9<B (uj(Zs— :(ZSN,)JrN*l(t_S) N 5¢U;(ZSN,)(t_S))QJ(dS’ de)

i=1j#i

> (Qi)lgigN independent Poisson measures, intensity ds ® df.

> (pzl 6ui(t) = Zi 5(;5”;(1:)



Example 4: a model of interacting neurons

v

Mean-field limit N — oo.

Example 4.1: The simplest case when synchronization is
ignored: ¢,(t) = u for every t > 0.

If Z(;V ~ go(u)du, then ZtN(du) ~ {i(du) = g(t, u)du.

g(t, u) weak solution to the nonlinear evolution equation
5ig(t.u) + (g(t,-), B) F8(t, u) + B(u)g(t, u) = 0,

g(o’ u) = g()(U), g(t, 0) =1.

The nonlinearity in the limiting model reflects the interactions
of the individuals.



Example 4.2: a model of interacting neurons with
stochastic flow

> Case of a stochastic flow Z¢.(t) = r(dx(t), Z]V)dt, with
mean-reverting

k(x,ZN) = =\(x — ZM), x>o0.

» If ZV ~ go(u)du, then ZN(du) ~ &(du) = g(t, u)du.
» g(t, u) weak solution to the evolution equation

atg + (<g(t, ')7 B> - )‘U)aug + (B(u) - A)g =0,

g(0,u) = go(u), g(t,0) = FELLE



Example 4.1 and 4.2: identification of the objects of
Interest

We can identify the following objects

o N — 0.
e ZVis (ZN)o<t<7 and we observe ZVN = ZN or a uniform
sample of size n < N extracted from Z".
o fis (t,u)— g(t,u)or x — B(u).
e 7N and H are the SDE and the nonlinear transport evolution
equation.
Observation schemes



More non-linear models in a large population model

> Interaction between particles can play at various levels. We
elaborate briefly on three more examples.

> Example 3.2: Birth-and-death processes with population
dependent death rate.

» Example 5: Interacting Hawkes processes.

> Example 6: The McKean-Vlasov model and the effect of
diffusion.



Example 3.2: nonlinear death rate in population models

» In Example 3, we replace the death rate B(t, a) by
B(t,a,ZM) = B(t,a)+ [ U(a,a")ZVN(da')
Ry

for some kernel U : Ry xRy — Ry,

> The kernel U accounts for some population dependent
pressure on the death rate.

» If ZV ~ go(a)da, then Z[(da) ~ g(t, a)da.

» g(t,a) weak solution of the nonlinear evolution equation
(0 + O)e(t,3) + (B(t.3) + [y U(a, 2)e(t.a))g(t,a) = 0,

g(0,u) = go(uv) = [5° b(t, a)g(t,a)da.



Example 5: interacting Hawkes processes

» We consider a system of point processes interacting through
their jJump intensities.

> Point process: N =3 ;51 1(7,<4) where
To=0<Ti<Th<...<T;<... jump times

» Simplest example: Poisson process with intensity A > 0:

e The T; — T;_; are independent and Exp(\) distributed.
e Alternative representation:

t
Nt:// Q(ds, do)
o Jo<o<a

Q: Poisson random measure with intensity ds ® d6.



Example 5: univariate Hawkes processes

» Nonlinear Hawkes processes: replace A by a random past
dependent stochastic intensity

Ae =h(A+ /Ot_ o(t — s)dN),

e h:R — Ry (h(x) = x: linear Hawkes processes.)
e ¢ :R — R causal interacting kernel: Supp(p) C R..

» Interpretation: with 7y = o(Ns,s < t),
P(Nejpde — Ne > 1| Feo) = Aedt.

» Alternative representation as a SDE:

t
Nt:// Q(ds, db).
0 Jo<o<h(M+[5 p(s—u)dN, )



Example 5: interacting Hawkes processes

» System of nonlinear Hawkes processes: defined by the family
of SDE: for i =1,..., N,

t
M:/P/ Qi(ds, db),
0 Jo<o<h(AN-1 SN, [ (s —u)dN)

Q' ind. Poisson, intens. ds ® d#.
>z =N Opj-
» Mean-field limit: ZN(ds) ~ g(t, ds) as N — oo.

» g is a weak solution of

{aguﬁ)wmﬁwammmﬂg;gg@sn)a

(0,s) = do(ds), m; fo h( [fs (s — u)dm,)ds



Example 6: McKean-Vlasov model

» System of N interacting diffusion processes :

N
dX{ = —b(X{)dt—N"1> " U(X[-X])dt+odBl, i=1,...,N,
j=1

B! ind. Brownian motions.
N _ py-15N )
> Zp =N O

» Mean-field limit: if ZY(dx) &~ go(dx), then
ZN(dx) =~ g(t, x)dx.

» g(t,s) is a weak solution to the McKean-Vlasov equation
0eg(t,x) + Okg(b+ Uxg) = $02g,

(0, x) = go(dx).



THANK YOU FOR YOUR ATTENTION!
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