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Prediction with the help of experts

A large panel of possibly diverse experts. . .

▶ Each expert is giving predictions

▶ Experts may be more or less skilled

▶ How can one make the best use of expert advice?



Prediction with the help of experts

▶ In many applications we want to predict an output Y as accurately as possible and
have access to a panel of “expert” predictions F1, . . . , FK .

▶ Concretely, experts might be human experts (e.g. finance, sports, crowdsourcing )
but more often statistical or numerical models.

▶ Models might differ by architecture, assumptions they are built on, or tuning
parameters.

▶ Often the case in industrial applications: R&D teams will want to try out and
compare many existing models (+ in-house developed models).

▶ Models/experts are treated as “black boxes” and a loose general goal is to find a
way to find a prediction “not much worse than the best expert”



Problem 1: ªbatchº learning

▶ We have a large (but finite) family of prediction models (e.g. weather forecast,
electricity consumption) F1, . . . , FK .

▶ Each model can be run under different initial conditions X ∈ X ,
giving rise to predictions F1(X), . . . , FK(X).

▶ We can compare the output of the different models on the same input to an
observed “truth” Y ∈ Y .

▶ Quality of a single prediction is measured through a loss function (e.g. squared loss)

ℓ(Fk(X), Y).



Problem 1: ªbatchº learning (continued)

▶ The quality (risk) of a prediction model is measured through an average according
to a probability distribution P:

LP(F) := E(X,Y)∼P[ℓ(F(X), Y)].

▶ We have access to data (Xt, Yt), t = 1, . . . ,N generated i.i.d from P.

Separate “training” and prediction: observe all the data and the model predic-
tions, then based on this decide of a “final” prediction strategy F.

▶ Goal: have a small regret

R(F) := LP(F)− min
k∈JKK
LP(Fk).

▶ Note: due to randomness in the training data, and possible internal randomization
of F, we can ask for this guarantee in expectation or with high probability (whp)
with respect to (Xt, Yt)t∈JNK (and internal randomization).



Some notation (setting 1)

▶ We will “forget” about the covariate X and identify Fk = Fk(X) (random variable)

▶ The training sequence will be denoted

SN = (Ft, Yt)t∈JNK,

▶ where Ft = (F1,t, . . . , FK,t) is the vector of expert predictions at time t
(with Fk,t = Fk(Xt)).

▶ The loss of expert k at training round t is denoted

ℓk,t = ℓ(Fk,t, Yt).

▶ The population expected loss of expert k is

Lk = LP(Fk) = E[ℓ(Fk, Y)].



Problem 2: sequential learning/prediction

▶ We want to predict sequentially outputs Y1, . . . , YN. The generating mechanism
for the outputs is unknown (not assumed i.i.d. – “adversarial”)

▶ We have access to a large but finite family of “expert predictions” F1, . . . , FK
(Each expert might have access to some privileged information that we don’t see.)

▶ Examples: time series, recommender systems. . .

▶ Each expert is identified with a sequence of predictions: Fk ≡ (Fk,1, . . . , Fk,N).

▶ As before we measure quality of a single prediction F for output Y via a loss
function ℓ(F, Y).



Problem 2: sequential setting (cont’d)

▶ The quality of a prediction sequence F = (F1, . . . , FN) is measured through its
averaged cumulative loss

L
(N)
seq(F) :=

1

N

N

∑
t=1

ℓ(Ft, Yt).

Constraint: a valid prediction sequence (F1, . . . , FN) is such that prediction Ft
may only depend on past outputs (Yt′)t′<t and past and present expert predic-
tions (Fi,t′)i∈JKK,t′≤t . We will talk of a prediction strategy.

▶ In this scenario “learning” and “prediction” are intertwined.
▶ Goal: guarantee a small regret

R(F) := Lseq(F)− min
k∈JKK
Lseq(Fk).

▶ Note: due to possible randomization in the prediction strategy, we can ask for this
guarantee in expectation or with high probability (whp).



How to combine experts?

▶ We assume that the loss ℓ(., .) is convex in its first variable (the prediction,
assumed to take values in a vector space).

We will only consider “combination of experts” strategies that are convex
combinations:

Fw :=
K

∑
i=1

wiFi, wherew ∈ ∆,

where ∆ is the (K − 1)-dimensional simplex.

▶ Instead of exactly combining experts we might also usew as a probability
distribution on JKK and draw one expert at random.



Two scenarios: overview

Stochastic + simple regret

▶ SN = (Yt, Ft)1≤t≤N are i.i.d.
wrt. t, with joint distribution P.

▶ Observe all the above, then
pick a combinationw ∈ ∆.

▶ Goal: small average “simple”
regret on future predictions:

R(w) = E[ℓ(Fw, Y)]

−min
i

E[ℓ(Fi, Y)].

Fixed seq. + cumulative regret

▶ (Yt, Ft)1≤t≤N are a fixed
sequence

▶ Observe the above up to t− 1,
then pick a combination wt ∈ ∆,
sequentially for t = 1, . . . ,N.

▶ Goal: small cumulative regret

R((wt)t≤N) = 1

N

(
∑
N
t=1 ℓ(Fwt , Yt)

−mini ∑
N
t=1 ℓ(Fi,t, Yt)

)



From fixed sequence to stochastic

Proposition : Adversarial Regret > Expected Stochastic Regret

Assume ŵ = (ŵt)t≤N is an expert combination strategy in the fixed sequence
scenario, such that for some deterministic number B:

Lseq(Fŵ) ≤ min
i
Lseq(Fi) + B.

Then if the sequence (Ft, Yt)t∈JNK is actually i.i.d. from a distribution P, then

E
[
Lseq(Fŵ)

]
≤ min
i
LP(Fi) + B.

Proof:

E

[
min
i
Lseq(Fi)

]
≤ min
i

E
[
Lseq(Fi)

]
= min
i

1

N

N

∑
t=1

E[ℓ(Fi,t, Yt)] = min
i
LP(Fi).



From cumulative regret to simple regret

Proposition : Online to batch conversion (Progressive mixture)

Assume ŵ = (ŵt)t≥0 is an expert combination strategy in the fixed sequence
scenario.
In the “batch” learning scenario, with batch training sample SN =

(Ft, Yt)t∈JNK
i.i.d.∼ P, let ŵ be the result of the above strategy applied to

the sample considered as a sequence, and consider

w̃ :=
1

N+ 1

N+1

∑
t=1

ŵt ∈ ∆.

(Recall ŵt only depends on data observed for t
′ < t.)

Then the simple risk of the above aggregate is bounded as

ESN [LP(Fw̃)] ≤ ESN+1

[
L
(N+1)
seq (ŵ)

]
.



A ªuniversalº strategy
Exponential Weights Averaging (EWA) (Vovk, 1998)

▶ Define the cumulative loss of each expert:

L̂k,t =
t

∑
u=1

ℓ(Fk,u, Yk) =
t

∑
u=1

ℓk,u.

▶ And the combination weights ( for some λ > 0)

wEWAk,t ∝ exp(−λL̂k,t).

▶ (Note: in the stochastic scenario, λ = ∞ is the “empirical risk minimization”
(ERM).)



Pseudo-Bayesian interpretation of EWA

▶ Interpret the loss ℓ(Fi, Y) as a “pseudo-log-likelihood” for expert i

▶ The EWA weights

wEWAk,t ∝ exp
(
−λL̂k,t

)

can then be interpreted as a pseudo-posterior in the Bayesian sense (up to the
rescaling λ).

▶ Alternative “thermodynamic” interpretation: the reweighting of experts follows a
“Gibbsian” distribution where the losses play the role of theminus energy, and λ

the inverse temperature.



A ªuniversalº strategy
Exponential Weights Averaging (EWA)

Theorem :

▶ In the stochastic+simple regret scenario, if λ ≳
√
log K/N:

ESN

[
R(wEWAN )

]
≲

√
log K

N
,

▶ And in the sequence+cumulative regret scenario, if λ ≃
√
log K/N:

R((wEWAt )1 ≤t≤N) ≲

√
log K

N
.



A ªuniversalº strategy
Exponential Weights Averaging (EWA)

Theorem :

▶ In the stochastic+simple regret scenario, if λ ≳
√
log K/N:

ESN

[
R(wEWAN )

]
≲

√
log K

N
,

also holds with high probability wrt. observations SN. ,

▶ And in the sequence+cumulative regret scenario, if λ ≃
√
log K/N:

R((wEWAt )1 ≤t≤N) ≲

√
log K

N
.

▶ In both scenarios: also holds for randomized version
(Pick 1 random expert using weights as probability)
(In expectation or with high probability wrt. randomization).,



Fast rates

▶ Improved bounds if we assume some form of strong convexity of the loss.

▶ In what follows we will assume

Assumption (BSL)

Predictions and target belong to [0, 1] and loss is squared loss.

(can be generalized to bounded, exp-concave losses)

▶ Then for λ ≃ 1:
▶ In the sequence+cumulative regret scenario,

R((wEWAt )1 ≤t≤N) ≲
log K

N
.

▶ In the stochastic+simple regret scenario, combined with “online-to-batch/progressive mixture”

ESN

[
R(wEWAN )

]
≲

log K

N
,



Fast rates

▶ Improved bounds if we assume some form of strong convexity of the loss.

▶ In what follows we will assume

Assumption (BSL)

Predictions and target belong to [0, 1] and loss is squared loss.

(can be generalized to bounded, exp-concave losses)

▶ Then for λ ≃ 1:
▶ In the sequence+cumulative regret scenario,

R((wEWAt )1 ≤t≤N) ≲
log K

N
.

▶ In the stochastic+simple regret scenario, combined with “online-to-batch/progressive mixture”

ESN

[
R(wEWAN )

]
≲

log K

N
,

But: not true with high probability wrt. observations Sn! /

▶ In either scenario: not true for randomized version (even in expectation)./



Course Plan
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3 Lecture 3: Fast rates on a budget II (fixed sequence prediction, cumulative regret)



Prediction with costly expert advice?

▶ Asking for expert advice is costly!

▶ “Monetary” cost:
▶ Consulting an expert before the event (a priori) is expensive
▶ Observing an expert’s individual loss after the event (a posteriori) may be cheaper

▶ Time/Computation cost:
▶ computing/consulting all individual prediction models a priorimight be subject to

strong constraints due to time, communication or computation constraints
▶ constraints for observing losses a posteriorimight me looser

▶ “Frugal” learning: Integrate such constraints into the mathematical setup



Prediction with budgetary constraints

▶ Constraint for prediction (a priori): use only up to p expert queries
(i.e. combination weights must belong to ∆p)

▶ Constraint for observation (a posteriori): several settings:

▶ Global budget constraint: (simple regret scenario only)
Limitation of total numberQ observed expert losses during training.
(No limitation on number of training rounds.)

▶ Local budget constraint: (both scenarios)
Limitation tom observed expert losses in each round.
(Simple regret scenario: still limited toN training rounds.)



What is known? The slow rate setting, p = 1

▶ “Slow rate” setting:

▶ Stochastic + Simple regret scenario:
Spread out equally training observations so that each expert is observedQ/K times
(Q = Nm for local budget constraint)
Then use randomized EWA strategy for prediction.
Simple regret:O(

√
(log K)K/Q).

▶ Remark: equivalently if one aims at a guaranteed regret less than ε > 0, then
Qε = O(K log(K)ε−2) queries are necessary.



What are our aims?

Assumption (BSL)

Predictions and target belong to [0, 1] and loss is squared loss.

▶ When are fast rates possible, impossible under budget constraints?

▶ What is the influence of the budgetary constraints on the regret?

▶ Are fast rates bounds with high probability possible?

▶ In the stochastic scenario, is it possible to obtain fast context dependent bounds
(i.e. faster than worst case if many experts are largely sub-optimal)



Unconstrained (=full information) setting
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The full information/unconstrained case

(m = p = K)
A.k.a. ªaggregation for model selectionº problem in batch setting

Assumption (BSL)

Predictions and target belong to [0, 1] and loss is squared loss.

▶ Audibert(2008): Although progressive EWA is has fast regret in expectation, it is
deviation suboptimal i.e. excess risk isΩ(1/

√
N) with constant prob.

▶ Lecué-Mendelson(2009): ERM on convex combinations of experts is suboptimal

▶ Both Audibert(2008) and Lecué-Mendelson(2009) propose specific strategies
with optimal fast rate (O(1/N)) excess risk deviations with high probability

▶ Fact: proper decision rules selecting one expert for prediction (e.g. ERM) cannot

attain fast rates in general – at bestO(1/
√
N).

▶ Audibert’s “empirical star” algorithm outputs a combination of only 2 experts.



Revisiting the unconstrained case

Notation:

▶ L̂i empirical average loss of expert i;

▶ d̂ij empirical mean of (ℓ(Fi, Y)− ℓ(Fj, Y))
2.

Test statistic for expert i vs expert j:

∆̂ij := L̂j − L̂i − αd̂ij − α
2.

(
α ≃

√
log(Kδ−1)/N

)

Fact: (from empirical Bernstein’s inequality)

∆̂ij > 0 implies Lj > Li w.p. (1− δ) uniformly over i, j



A simple algorithm ± unconstrained case

Full information algorithm

Set of candidates:
non-rejected experts

S :=
{
j ∈ JKK : sup

i∈JKK
∆̂ij ≤ 0.

}
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▶ Choose k̄ ∈ S arbitrarily ;



A simple algorithm ± unconstrained case

Full information algorithm

Set of candidates:
non-rejected experts

S :=
{
j ∈ JKK : sup

i∈JKK
∆̂ij ≤ 0.

}

▶ Choose k̄ ∈ S arbitrarily ;
▶ Pick j̄ ∈ Arg Maxj∈S d̂k̄j ;



A simple algorithm ± unconstrained case

Full information algorithm

Set of candidates:
non-rejected experts

S :=
{
j ∈ JKK : sup

i∈JKK
∆̂ij ≤ 0.

}

▶ Choose k̄ ∈ S arbitrarily ;
▶ Pick j̄ ∈ Arg Maxj∈S d̂k̄j ;

▶ Predict F̂ := 1

2
(Fk̄ + Fj̄).



Fast rate in full information case

Theorem

Under (BSL), for the predictor F̂ previously defined for the full information case,
with probability 1− δ over the training phase:

R(F̂) ≲ log(Kδ−1)
N

.

▶ Same type of result as Audibert (2008) and Lecué and Mendelson (2009) but with simpler algorithm &
proof.



The global budget setting

▶ R̂i, d̂ij and ∆̂ij are defined as before but are updated on-line

▶ κ is a numerical constant

Budgeted setting algorithm

Input δ.
Initialization: S← JKK.
for t = 1, 2, . . . do
Remove experts marked for time t from S.
Observe losses of all the experts in S at time t.

Update ∆̂ij, L̂ij, d̂ij for all i, j ∈ S.
For all i, j ∈ JKK, if ∆̂ij > 0, mark j for deletion from S at time κt.
if the budget is consumed then

let k̄ ∈ S, and l̄← argmax
j∈S
d̂k̄j .

return F̂ = (Fk̄ + Fl̄)/2.
end if

end for



Result for the global budget setting

▶ Introduce ∆ij = Li − Lj and dij = E
[
(ℓ(Fi, Y)− ℓ(Fj, Y))

2
]
.

Tij :=
1

∆ij
max

(
d2ij

∆ij
; 1

)
.

If Lj < Li : Tij is the number of joint queries to (i, j) so that i is eliminated by j
(w.h.p.)

▶ Let S∗ denote the set of optimal experts and let

T∗i := min
j:Lj<Li
Tij; T̄∗ := max

i ̸=S∗
Ti

▶ T∗i is the minimum of joint queries for i to be eliminated by any other (better)
expert.



Result for the global budget setting

▶ For ε ≥ 0 let
Cε := ∑

i∈JKK

min

(
T∗i , T̄

∗,
1

ε

)
,

Theorem : Instance dependent-bound, global budget setting

Assume (BSL).
For the predictor F̂ output by the algorithm in the global budget setting, if the
budgetQ is such that

Q ≳ Cε log(Kδ
−1Cε),

then with probability 1− δ over the training phase it holds

R(F̂) ≲ ε.



Comparison to unconstrained setting

▶ It holds

Cε = ∑
i∈JKK

min

(
Ti, T̄

∗,
1

ε

)
≤ K

ε
,

▶ So that a sufficient budget constraint is

Q ≳
K

ε
log
Kδ−1

ε
≥ Cε log(Kδ

−1Cε)

▶ In full observation model, to reach the same precision, need number of expert
observations

Qε ≂
K

ε
log(Kδ−1)

▶ Hence, at worst additional logarithmic factor w.r.t. full information (and potentially
much more efficient)



Local budget setting, p = 2, m ≥ 2 arbitrary

Similar algorithm as before, but sample at each training roundm experts uniformly from
the set of remaining candidates S, observe their losses and update corresponding
quantities.

Theorem : Instance independent-bound,m-queries setting (m ≥ 2)

Under (BSL), for the predictor F̂ output by the algorithm in them-queries setting.
Then with probability 1− δ over the training phase it holds

R(F̂) ≲ (K/m)2 log
(
NKδ−1

)

N
.



Lower bounds

Under (BSL):

Proposition : (p = 1)

For K = m = 2 and p = 1, for any N, and for any output F̂ = F
k̂
after N

training rounds, there exists a joint probability distribution for experts {F1, F2}
and target variable Y (all bounded by 1) s.t., with probability at least0.1,

R(F̂) ≳ 1√
N
.

Proposition : (m = 1)

For K = p = 2, andm = 1, for anyN, for any training observation strategy and

convex combination output F̂ following the game protocol forN training rounds,
there exists a joint probability distribution for experts {F1, F2} and target vari-
able Y (all bounded by 1) such that with probability at least0.1,

R(F̂) ≳
1√
N
.
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Fixed sequence scenario under limited advice

▶ At each round:
▶ Predict a convex combination of p experts
▶ Observe a posteriori the loss ofm experts

▶ “Inclusion Condition” (IC) in effect if the set ofm a posteriori observed experts
must include the set of p experts used for prediction

▶ The casem = p = K is the full information setting.

▶ The casem = p = 1 (IC)= true is the bandit setting.



Previous results (fixed sequence scenario)

p = 1 p ≥ 2 p = K

m = 1

√
K
N

(Bandit setting) [1,2]

Lower bound Upper bound
Fast rates?

√
K
m
1

N

√
K
m

log(K)
N

m ≥ 2

[3] [3] (log K)/N
m = K

[4]

Bounds up to absolute numerical factors.

[1]:Auer et al., 2002; [2]: Audibert and Bubeck, 2010; [3]: Seldin et al., 2014; [4]: Vovk, 1990



The slow rate setting, p = 1, m ≥ 1
Seldin et al. 2014

▶ Exponential combination weights (for some λ > 0) using pseudo-losses ℓ̂i,t :

ŵEWAi,t ∝ exp

(
−λ

t

∑
k=1

ℓ̂i,k

)
,

▶ Draw expert It at random according to ŵEWA. Use their prediction.

▶ Ifm > 2 observe additionalm− 1 expert losses drawn uniformly at random.
DenoteOt the total set of observed experts (including It).

▶ Define pseudo-losses

ℓ̂i,t =
1{i ∈ Ot}

P[i ∈ Ot|Ft]
ℓi,t.

▶ Note thatE

[
ℓ̂i,t|Ft

]
= ℓi,t (unbiased estimate).



The slow rate setting, p = 1, m ≥ 1
Seldin et al. 2014

Theorem :

In the sequence+cumulative regret scenario, if λ ≃
√
m log K/N:

R((wEWAt )1 ≤t≤N) ≲

√
K

m

log K

N
.



What is known? The fast rate setting / full

information, m = p = K

Theorem

Under (BSL), for any input parameter: λ ∈
(
0, 1
4

)
, the regret of the (vanilla)

EWA ŵEWA satisfies for any sequence of target variables and expert predictions:

RT ≲
log(Kδ−1)

λN
.



Previous results (fixed sequence scenario)

p = 1 p ≥ 2 p = K

m = 1

√
K
N

(Bandit setting) [1,2]

Lower bound Upper bound
Fast rates?

√
K
m
1

N

√
K
m

log(K)
N

m ≥ 2

[3] [3] (log K)/N
m = K

[4]

Bounds up to absolute numerical factors.

[1]:Auer et al., 2002; [2]: Audibert and Bubeck, 2010; [3]: Seldin et al., 2014; [4]: Vovk, 1990



Modified EWA strategy

▶ Exponential combination weights (for some λ > 0) using pseudo-losses ℓ̂i,t :

ŵEWAi,t ∝ exp

(
−λ

t

∑
k=1

ℓ̂i,k

)
,

▶ Modification 1: p = 2 sufficient. Draw at random 2 independent experts It, Jt from

ŵ
EWA and predict their midpoint

FIt + FJt
2

.

▶ Modification 2: Ifm > 2 observe loss of It and additionalm− 2 expert losses in
setOt drawn uniformly at random. Estimate pseudo-losses ℓ̂i,t from observed
losses only.



Modified EWA strategy: pseudo-loss

▶ Unbiased loss estimation using “smart centering” on one expert picked by EWA:

ℓ̂i,t = ℓIt,t + 1{i ∈ Ot}
K

m− 2 (ℓi,t − ℓIt,t)

▶ Modification 3: Second-order adjustment:

ℓ̃i,t = ℓ̂i,t−λ1{i ∈ Ot}
K

m− 2 (ℓi,t − ℓIt,t)
2.

−→ corresponding EWA weights denoted as w̃EWA

Note: it is an “anti-penalty” on estimated losses: optimism in the face of uncertainty.



Algorithmic complexity considerations

▶ The pseudo-losses take the form

ℓ̃i,t = ℓIt,t + 1{i ∈ Ot}Ψ(ℓi,t − ℓIt,t).

▶ Because of exponential weight normalization, the weights are unchanged if we shift
all pseudo-losses by the same quantity (for all experts).

▶ Thus, we can use instead the shifted pseudo-losses

ℓ̌i,t = ℓ̃i,t − ℓIt,t = 1{i ∈ Ot}Ψ(ℓi,t − ℓIt,t).

▶ Only need to update for observed experts!

▶ Using binary tree storage of weights, total complexity per round (weight update +
random draw of expert indices) is onlyO(m log K).



Limited feedback I (m ≥ 3, p = 2)

Theorem

Under (BSL), for λ ≃ mK , the regret of the modified EWA ŵ
EWA algorithm satis-

fies for any sequence of target variables and expert predictions:

E[RT ] ≲
K

m

log(K)

N
,

where the expectation is with respect to the strategy randomization.

Theorem

Under (BSL), for λ ≃ mK , the regret of the second-order modified EWA w̃
EWA

satisfies for any sequence of target variables and expert predictions, with proba-
bility 1− δ wrt the strategy randomization:

RT ≲
K

m

log(Kδ−1)
N

.



Fast rates results (seq. prediction, cumul. regret)
Additional results in green

p = 1 p ≥ 2
Lower Bound Upper Bound (p = 2)

m = 1

√
K

N

√
K

N

√
K

N

IC = True :
K2 log(K)
N

m = 2
K

N IC = False :
K log(K)
N

Lower bound Upper bound

K

mN

K log(K)

mNm ≥ 3
√
K

mN

√
K log(K)

mN

Bounds up to absolute numerical factors. Upper bounds also hold w.h.p (1− δ) with factor log δ
−1 .



Lower bounds

The distinction between fast and slow rates in the upper bounds is not an artifact but is
also supported by (worst case) lower bounds.

Theorem

Under (BSL), if either p = 1 orm = 1, it holds

inf supE[RT ] ≳
√
K

mN
.

and form ≥ 2, p ≥ 2 it holds

inf supE[RT ] ≳
K

mN
,

where the inf is over convex aggregation strategies and the sup over sequences
(the expectation is over possible randomization of the strategy).



Take home messages

▶ Scenarios for “frugal learning” under budget limitations for expert access
Suitable assumption on loss allows fast rates.

▶ In all scenarios, in order to attain fast ratesO(1/Q) (vs.O(1/
√
Q)) for regret as a

function of the number of queriesQ, it is necessary and sufficient to:
▶ be able to predict a combination of p = 2 experts;
▶ be able to observe at leastm ≥ 2 experts’ losses per round.

▶ Results in expectation and with high probability.

▶ The natural regret bound to aim for appears to be K/Q. Some loose ends
remaining:
▶ Extra logarithmic factors everywhere
▶ For stochastic + simple regret, local budget scenario: extra factor K/m
▶ For fixed seq + cumul. regret,m = p = 2, (IC)=true (the “bi-bandit”): extra factor K
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General assumption on loss function

▶ A function f : E → R, where E is a convex set, is in the class E(c) if:

∀x, y ∈ E : f

(
x+ y

2

)
≤ 1
2

(
f(x) + f(y)− c−1(f(x)− f(y))2

)
.

▶ Our “fast rates” results hold if predictions take values in a convex set E and for all y,
ℓ(·, y) is in the class E(c) (the constant c comes into the bounds).

▶ Exp-concave, range bounded functions belong to E(c) for a suitable c.

▶ Conversely, f ∈ E(c) and continuous implies range-bounded by c and f is
(4/c)-exp-concave.

▶ Strongly convex, Lipschitz functions also belong to E(c) for a suitable c.
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